Visual–Vestibular Interaction for Postural Control During Sit-to-Stand: Effects of Aging

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

During sit-to-stand (STS), the vestibular system is highly stimulated in response to linear acceleration of the head and may play an important role, in addition to vision, for postural control. We examined the effects of aging on visual–vestibular interaction for postural control during STS in 15 young (22.5 ± 1.1 years) and 15 older (73.9 ± 5.3 years) participants. Vestibular information was manipulated using galvanic vestibular stimulation. Vision conditions involved normal (eyes open), suboptimal (blurring goggles), and no (eyes closed) vision. Older participants had significantly greater mediolateral peak-to-peak trunk roll (p = .025) and center of mass displacements (p < .001) than young participants. However, despite having greater mediolateral instability, older participants utilized similar strategies as young participants to overcome sensory perturbations during STS. Overall visual inputs were more dominantly used for mediolateral trunk control during STS than vestibular inputs.

Lui and Deshpande are with the School of Rehabilitation Therapy, Faculty of Health Sciences, Queen’s University, Kingston, Ontario, Canada. Hewston is with the Geriatric Education and Research in Aging Sciences (GERAS) Centre, Dept. of Medicine, McMaster University, Hamilton, Ontario, Canada.

Address author correspondence to Nandini Deshpande at nandinijd@yahoo.com.
Motor Control
Article Sections
References
  • AkramS.B. & McIlroyW.E. (2011). Challenging horizontal movement of the body during sit-to-stand: Impact on stability in the young and elderly. Journal of Motor Behavior 43(2) 147153. PubMed doi:10.1080/00222895.2011.552077

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BenjuyaN.MelzerI. & KaplanskiJ. (2004). Aging-induced shifts from a reliance on sensory input to muscle cocontraction during balanced standing. The Journals of Gerontology Series A: Biological Sciences & Medical Sciences 59(2) 166171. doi:10.1093/gerona/59.2.M166

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BentL.R.McFadyenB.J. & InglisJ.T. (2005). Vestibular contributions during human locomotor tasks. Exercise and Sport Sciences Reviews 33(3) 107113. PubMed doi:10.1097/00003677-200507000-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BernardiM.RosponiA.CastellanoV.RodioA.TraballesiM.DelussuA.S. & MarchettiM. (2004). Determinants of sit-to-stand capability in the motor impaired elderly. Journal of Electromyography and Kinesiology 14(3) 401410. PubMed doi:10.1016/j.jelekin.2003.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrandtT.StruppM. & BensonJ. (1999). You are better off running than walking with acute vestibulopathy. Lancet 354(9180) 746. PubMed doi:10.1016/S0140-6736(99)03179-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BuatoisS.MiljkovicD.ManckoundiaP.GueguenR.MigetP.VançonG.BenetosA. (2008). Five times sit to stand test is a predictor of recurrent falls in healthy community-living subjects aged 65 and older. Journal of the American Geriatrics Society 56(8) 15751577. PubMed doi:10.1111/j.1532-5415.2008.01777.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeshpandeN. & PatlaA.E. (2007). Visual-vestibular interaction during goal directed locomotion: Effects of aging and blurring vision. Experimental Brain Research 176(1) 4353. PubMed doi:10.1007/s00221-006-0593-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeshpandeN. & ZhangF. (2014). Trunk, head, and step characteristics during normal and narrow-based walking under deteriorated sensory conditions. Journal of Motor Behavior 46(2) 125132. doi:10.1080/00222895.2013.877416

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FitzpatrickR.C. & DayB.L. (2004). Probing the human vestibular system with galvanic stimulation. Journal of Applied Physiology 96(6) 23012316. PubMed doi:10.1152/japplphysiol.00008.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FolsteinM.F.FolsteinS.E. & McHughP.R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 12(3) 189198. PubMed doi:10.1016/0022-3956(75)90026-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GuralnikJ.M.FerrucciL.PieperC.F.LeveilleS.G.MarkidesK.S.OstirG.VWallaceR.B. (2000). Lower extremity function and subsequent disability: Consistency across studies, predictive models, and value of gait speed alone compared with the Short Physical Performance Battery. The Journal of Gerontology Series A: Biological Sciences & Medical Sciences 55(4) M221M231. doi:10.1093/gerona/55.4.M221

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HoozemansM.J.M.SlaghuisW.FaberG.S. & van DieënJ.H. (2007). Cart pushing: The effects of magnitude and direction of the exerted push force, and of trunk inclination on low back loading. International Journal of Industrial Ergonomics 37(11–12) 832844. doi:10.1016/j.ergon.2007.07.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HorakF.B. (2006). Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age and Ageing 35 (Suppl. 2) ii7ii11. doi:10.1093/ageing/afl077

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JahnK.StruppM.SchneiderE.DieterichM. & BrandtT. (2001). Visually induced gait deviations during different locomotion speeds. Experimental Brain Research 141(3) 370374. PubMed doi:10.1007/s002210100884

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MarigoldD.S. & PatlaA.E. (2008). Age-related changes in gait for multi-surface terrain. Gait & Posture 27(4) 689696. PubMed doi:10.1016/j.gaitpost.2007.09.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MassionJ. (1998). Postural control systems in developmental perspective. Neuroscience & Biobehavioral Reviews 22(4) 465472. PubMed doi:10.1016/S0149-7634(97)00031-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGibbonC.A.KrebsD.E. & ScarboroughD.M. (2001). Vestibulopathy and age effects on head stability during chair rise. Acta Oto-Laryngologica 121(1) 5258. PubMed doi:10.1080/000164801300006272

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MoureyF.GrishinA.d’AthisP.PozzoT. & StapleyP. (2000). Standing up from a chair as a dynamic equilibrium task: A comparison between young and elderly subjects. The Journals of Gerontology Series A: Biological Sciences & Medical Sciences 55(9) B425B431. PubMed doi:10.1093/gerona/55.9.B425

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NovakA. & DeshpandeN. (2011). Comparing effects of deteriorated sensory information on sit-to-stand performance of young and older Adults—A pilot study. Journal of American Geriatric Society 59(3) 562563. doi:10.1111/j.1532-5415.2010.03290.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OatesA.R.PatlaA.E.FrankJ.S. & GreigM.A. (2005). Control of dynamic stability during gait termination on a slippery surface. Journal of Neurophysiology 93(1) 6470. PubMed doi:10.1152/jn.00423.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PaiY.C. & LeeW.A. (1994). Effect of a terminal constraint on control of balance during sit-to-stand. Journal of Motor Behavior 26247256. doi:10.1080/00222895.1994.9941680

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ParvataneniK.PloegL.OlneyS.J. & BrouwerB. (2009). Kinematic, kinetic and metabolic parameters of treadmill versus overground walking in healthy older adults. Clinical Biomechanics 24(1) 95100. PubMed doi:10.1016/j.clinbiomech.2008.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PaytonO.D. & PolandJ.L. (1983). Aging process. Implications for clinical practice. Physical Therapy 63(1) 4148. PubMed doi:10.1093/ptj/63.1.41

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RoebroekM.E.DoorenboshC.A.M.HarlaarJ.JacobsR. & LankhorstG.J. (1994). Biomechanics and muscular activity during sit-to-stand transfer. Clinical Biomechanics 9235244. doi:10.1016/0268-0033(94)90004-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchlichtJ.CamaioneD.N. & OwenS.V. (2001). Effect of intense strength training on standing balance, walking speed, and sit-to-stand performance in older adults. The Journals of Gerontology Series A: Biological Sciences & Medical Sciences 56(5) M281M286. PubMed doi:10.1093/gerona/56.5.M281

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchragerM.AKellyV.E.PriceR.FerrucciL. & Shumway-CookA. (2008). The effects of age on medio-lateral stability during normal and narrow base walking. Gait & Posture 28(3) 466471. PubMed doi:10.1016/j.gaitpost.2008.02.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StevermerC.A. & GilletteJ.C. (2016). Kinematic and kinetic indicators of sit-to-stand. Journal of Applied Biomechanics 32(1) 715. PubMed doi:10.1123/jab.2014-0189

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TsutsumiT.InaokaH.FukuokaY.IshidaA. & KitamuraK. (2003December). Contribution of the vestibular apparatus to postural control when rising from a chair. Acta Oto-Laryngologica 123(9) 10541059. PubMed doi:10.1080/00016480310000601

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WinterD.A. (1990). Biomechanics and motor control of human movement (2nd ed.). New York, NY: Wiley.

  • WinterD.A.PrinceF.FrankJ.PowellC. & ZabjekK. (1996). Unified theory regarding A/P and M/L balance in quiet stance. Journal of Neurophysiology 75(6) 23342343. doi:10.1152/jn.1996.75.6.2334

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WuehrM.SchnieppR.PradhanC.IlmbergerJ.StruppM.BrandtT. & JahnK. (2013). Differential effects of absent visual feedback control on gait variability during different locomotion speeds. Experimental Brain Research 224(2) 287294. PubMed doi:10.1007/s00221-012-3310-6

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 73 73 15
Full Text Views 7 7 2
PDF Downloads 3 3 1
Altmetric Badge
PubMed
Google Scholar
Cited By