An Oculus Rift Assessment of Dynamic Balance by Head Mobility in a Virtual Park Scene: A Pilot Study

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

Postural sway does not differentiate between balance disorders. Head kinematics within a salient, immersive environment could potentially help identifying movement patterns that are unique to vestibular dysfunction. We describe a virtual park scene, where participants are asked to avoid a virtual ball approaching their head, to target dynamic balance and quantify head movement strategy. Sixteen patients with vestibular dysfunction and 16 healthy controls were wearing the Oculus Rift and performed the “park” scene on floor and stability trainers. Significant between-group differences emerged in head path (patients rotated their head sideways more), head acceleration (controls had higher acceleration, especially on translation movements), and peak frequency (controls peaked around the frequency of the ball whereas patients were variable). Those findings demonstrated good to excellent test–retest reliability. There were no significant between-group differences in postural sway parameters. Future studies should establish norms across different levels of balance dysfunction and investigate the underlying mechanism leading to the movement strategy observed.

Lubetzky and Fu are with the Dept. of Physical Therapy, Steinhardt School of Culture Education and Human Development, New York University, New York, NY. Hujsak is with Vestibular Rehabilitation, The Ear Institute, Hearing and Balance Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY. Perlin is with Computer Science Dept., Courant Institute of Mathematical Sciences, New York University, New York, NY.

Address author correspondence to Anat V. Lubetzky at anat@nyu.edu.
Motor Control
Article Sections
References
  • AokiM.TokitaT.KuzeB.MizutaK. & ItoY. (2014). A characteristic pattern in the postural sway of unilateral vestibular impaired patients. Gait & Posture 40(3) 435440. doi:10.1016/j.gaitpost.2014.05.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChowS.ShaoJ.WangH. & LokhnyginaY. (2018). Sample size calculations in clinical research (3rd ed.). Boca Raton, FL: CRC Press. Retrieved from https://www.crcpress.com/Sample-Size-Calculations-in-Clinical-Research-Third-Edition/Chow-Shao-Wang-Lokhnygina/p/book/9781138740983

    • Search Google Scholar
    • Export Citation
  • CohenH.HeatonL.G.CongdonS.L. & JenkinsH.A. (1996). Changes in sensory organization test scores with age. Age and Ageing 25(1) 3944. PubMed ID: 8670527 doi:10.1093/ageing/25.1.39

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de HaartM.GeurtsA.C.HuidekoperS.C.FasottiL. & van LimbeekJ. (2004). Recovery of standing balance in postacute stroke patients: A rehabilitation cohort study. Archives of Physical Medicine and Rehabilitation 85(6) 886895. PubMed ID: 15179641 doi:10.1016/j.apmr.2003.05.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EikemaD.J.A.HatzitakiV.KonstantakosV. & PapaxanthisC. (2013). Elderly adults delay proprioceptive reweighting during the anticipation of collision avoidance when standing. Neuroscience 2342230. PubMed ID: 23305764 doi:10.1016/j.neuroscience.2012.12.053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HarbourneR.T. & StergiouN. (2009). Movement variability and the use of nonlinear tools: Principles to guide physical therapist practice. Physical Therapy 89(3) 267282. doi:10.2522/ptj.20080130

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HebertJ.R. & ManagoM.M. (2017). Reliability and validity of the computerized dynamic posturography sensory organization test in people with multiple sclerosis. International Journal of MS Care 19(3) 151157. doi:10.7224/1537-2073.2016-027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HoffmannC.P.SeigleB.FrèreJ. & Parietti-WinklerC. (2017). Dynamical analysis of balance in vestibular schwannoma patients. Gait & Posture 54236241. doi:10.1016/j.gaitpost.2017.03.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JacobsonG.P. & CalderJ.H. (2000). Self-perceived balance disability/handicap in the presence of bilateral peripheral vestibular system impairment. Journal of the American Academy of Audiology 24(2) 7676. PubMed ID: 10685673 doi:10.3766/jaaa.24.2.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JulianL.J. (2011). Measures of anxiety: State-Trait Anxiety Inventory (STAI), Beck Anxiety Inventory (BAI), and Hospital Anxiety and Depression Scale-Anxiety (HADS-A). Arthritis Care & Research 63(Suppl. 11) 467472. doi:10.1002/acr.20561

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KennedyR.S.FowlkesJ.E.BerbaumK.S. & LilienthalM.G. (1992). Use of a motion sickness history questionnaire for prediction of simulator sickness. Aviation Space and Environmental Medicine 63(7) 588593. PubMed ID: 1616434

    • Search Google Scholar
    • Export Citation
  • KeshnerE.A.StreepeyJ.DhaherY. & HainT. (2007). Pairing virtual reality with dynamic posturography serves to differentiate between patients experiencing visual vertigo. Journal of NeuroEngineering and Rehabilitation 424. PubMed ID: 17620142 doi:10.1186/1743-0003-4-24

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KirchnerM.SchubertP.GetrostT. & HaasC.T. (2013). Effect of altered surfaces on postural sway characteristics in elderly subjects. Human Movement Science 32(6) 14671479. PubMed ID: 24055362 doi:10.1016/j.humov.2013.05.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LangJ.IshikawaK.HatakeyamaK.WongW.H.YinM.SaitoT. & SibataY. (2013). 3D body segment oscillation and gait analysis for vestibular disorders. Auris Nasus Larynx 40(1) 1824. PubMed ID: 22705157 doi:10.1016/j.anl.2011.11.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LehmannE.L. (2006). Nonparametrics: Statistical methods based on ranks. New York, NY: Springer. Retrieved from https://www.abebooks.com/9780387352121/Nonparametrics-%20Statistical-Methods-Based-Ranks-0387352120/plp

    • Search Google Scholar
    • Export Citation
  • LubetzkyA.V.HujsakB.D.KaryE.E.DarmaninH. & PerlinK. (2017). An Oculus platform to measure sensory integration for postural control in patients with vestibular dysfunction. Paper presented at the 2017 International Conference on Virtual Rehabilitation (ICVR)Montreal, QC (pp. 17). doi:10.1109/ICVR.2017.8007458

    • Search Google Scholar
    • Export Citation
  • LubetzkyA.V.KaryE.HarelD.HujsakB.D. & PerlinK. (2018). Feasibility and reliability of a virtual reality oculus platform to measure sensory integration for postural control in young adults. Physiotherapy Theory and Practice 24116. doi:10.1080/09593985.2018.1431344

    • Search Google Scholar
    • Export Citation
  • Lubetzky-VilnaiA.McCoyS.W.PriceR. & CiolM.A. (2015). Young adults largely depend on vision for postural control when standing on a BOSU ball but not on foam. Journal of Strength and Conditioning Research 29(10) 29072918. PubMed ID: 26402476 doi:10.1519/JSC.0000000000000935

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ManciniM. & HorakF.B. (2010). The relevance of clinical balance assessment tools to differentiate balance deficits. European Journal of Physical and Rehabilitation Medicine 46(2) 239248.

    • Search Google Scholar
    • Export Citation
  • MorelM.BideauB.LardyJ. & KulpaR. (2015). Advantages and limitations of virtual reality for balance assessment and rehabilitation. Neurophysiologie Clinique/Clinical Neurophysiology 45(4–5) 315326. PubMed ID: 26527045 doi:10.1016/j.neucli.2015.09.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PaquetN.DannenbaumE.Hakim-ZadehR. & FungJ. (2006). Effects of fast head turns on head, trunk and pelvis motions during standing and walking in patients with unilateral vestibular deficit. Journal of Vestibular Research 16(6) 279284. PubMed ID: 17726281

    • Search Google Scholar
    • Export Citation
  • PardasaneyP.K.SlavinM.D.WagenaarR.C.LathamN.K.NiP. & JetteA.M. (2013). Conceptual limitations of balance measures for community-dwelling older adults. Physical Therapy 93(10) 13511368. PubMed ID: 23704036 doi:10.2522/ptj.20130028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PedaliniM.E.B.CruzO.L.M.BittarR.S.M.LorenziM.C. & GraselS.S. (2009). Sensory organization test in elderly patients with and without vestibular dysfunction. Acta Otolaryngologica 129(9) 962965. doi:10.1080/00016480802468930

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PortneyL.G. & WatkinsM.P. (2009). Foundations of clinical research: Applications to practice (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

    • Search Google Scholar
    • Export Citation
  • PozzoT.BerthozA.LefortL. & VitteE. (1991). Head stabilization during various locomotor tasks in humans. II. Patients with bilateral peripheral vestibular deficits. Experimental Brain Research 85(1) 208217. PubMed ID: 1884759 doi:10.1007/BF00230002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PrietoT.E.MyklebustJ.B.HoffmannR.G.LovettE.G. & MyklebustB.M. (1996). Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Transactions on Biomedical Engineering 43(9) 956966. PubMed ID: 9214811 doi:10.1109/10.532130

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quatman-YatesC.C.LeeA.HugentoblerJ.A.KurowskiB.G.MyerG.D. & RileyM.A. (2013). Test–retest consistency of a postural sway assessment protocol for adolescent athletes measured with a force plate. International Journal of Sports Physical Therapy 8(6) 741748. PubMed ID: 24377060

    • Search Google Scholar
    • Export Citation
  • ShroutP.E. & FleissJ.L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin 86(2) 420428. PubMed ID: 18839484 doi:10.1037/0033-2909.86.2.420

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SoamesR.W. & AthaJ. (1982). The spectral characteristics of postural sway behaviour. European Journal of Applied Physiology and Occupational Physiology 49(2) 169177. PubMed ID: 6981506 doi:10.1007/BF02334065

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WhitneyS.L.HudakM.T. & MarchettiG.F. (1999). The activities-specific balance confidence scale and the dizziness handicap inventory: A comparison. Journal of Vestibular Research 9(4) 253259. PubMed ID: 10472037

    • Search Google Scholar
    • Export Citation
  • YamamotoK.MamotoY.ImaiT.HirasakiE. & KuboT. (2002). Effects of caloric vestibular stimulation on head and trunk movements during walking. Gait & Posture 15(3) 274281. doi:10.1016/S0966-6362(01)00152-7

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 81 81 33
Full Text Views 4 4 1
PDF Downloads 1 1 0
Altmetric Badge
PubMed
Google Scholar