The Roles of Declarative Knowledge and Working Memory in Explicit Motor Learning and Practice Among Children With Low Motor Abilities

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

Effective learning methods are essential for motor skill development and participation in children with low motor abilities. Current learning methods predominantly aim to increase declarative knowledge through explicit instructions that necessitate sufficient working memory capacity. This study investigated the roles of declarative knowledge and working memory capacity in explicit motor learning of children with low motor abilities. We studied both acquisition performance (i.e., performance during practice) and learning (i.e., the improvement in performance from pretest to posttest). After practice with explicit instructions, children with low motor abilities showed significant learning, albeit that improvement was relatively small. However, working memory capacity and declarative knowledge did not predict learning. By contrast, working memory capacity and declarative knowledge did predict performance during practice. These findings suggest that explicit instructions enhance motor performance during practice, but that motor learning per se is largely implicit in children with low motor abilities.

van Abswoude and Steenbergen are with Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands. van der Kamp is with the Dept. of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Research Institute MOVE, VU University Amsterdam, Amsterdam, The Netherlands; and Institute of Human Performance, The University of Hong Kong, Hong Kong SAR, China. Steenbergen is with the School of Psychology, Australian Catholic University, Melbourne, Victoria, Australia.

Address author correspondence to Femke van Abswoude at f.vanabswoude@pwo.ru.nl.
Motor Control
Article Sections
References
  • AdamsI.L.J.LustJ.M.WilsonP.H. & SteenbergenB. (2015). Compromised motor control in children with DCD: A deficit in the internal model?—A systematic review. Neuroscience & Biobehavioral Reviews 47225244. doi:10.1016/j.neubiorev.2014.08.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AdamsJ.A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior 3(2) 111150. PubMed doi:10.1080/00222895.1971.10734898

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AllowayT.P. (2007). Automated working memory assessment. London, UK: Pearson Assessment.

  • AllowayT.P. & AllowayR.G. (2013). Working memory across the lifespan: A cross-sectional approach. Journal of Cognitive Psychology 25(1) 8493. doi:10.1080/20445911.2012.748027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders 5th revision: DSM-V. Washington, DC: Author.

    • Search Google Scholar
    • Export Citation
  • AndersonJ. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.

  • BernsteinN.A. (1996). On dexterity and its development. In M. Latash & M.T. Turvey (Eds.) Dexterity and its development (pp. 3244). Mahwah, NJ: Lawrence Erlbaum.

    • Search Google Scholar
    • Export Citation
  • BrockenJ.E.A.KalE.C. & van der KampJ. (2016). Focus of attention in children’s motor learning: Examining the role of working memory. Journal of Motor Behavior 48(6) 527534. PubMed doi:10.1080/00222895.2016.1152224

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BuszardT.FarrowD.VerswijverenS.ReidM.WilliamsJ.PolmanR.MastersR.S.W. (2017). Working memory capacity limits motor learning when implementing multiple instructions. Frontiers in Psychology 81350. doi:10.3389/fpsyg.2017.01350

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BuszardT.FarrowD.ZhuF.F. & MastersR.S.W. (2013). Examining movement specific reinvestment and working memory capacity in adults and children. International Journal of Sport Psychology 44351366. doi:10.7352/IJSP2013.44.351

    • Search Google Scholar
    • Export Citation
  • BuszardT.MastersR.S.W. & FarrowD. (2017). The generalizability of working-memory capacity in the sport domain. Current Opinion in Psychology 165457. doi:10.1016/j.copsyc.2017.04.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CapioC.M.PooltonJ.M.SitC.H.P.EguiaK.F. & MastersR.S.W. (2013). Reduction of errors during practice facilitates fundamental movement skill learning in children with intellectual disabilities. Journal of Intellectual Disability Research 57(4) 295305. PubMed doi:10.1111/j.1365-2788.2012.01535.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CapioC.M.PooltonJ.M.SitC.H.P.HolmstromM. & MastersR.S.W. (2013). Reducing errors benefits the field-based learning of a fundamental movement skill in children. Scandinavian Journal of Medicine & Science in Sports 23(2) 181188. PubMed doi:10.1111/j.1600-0838.2011.01368.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChowJ.Y.DavidsK.ButtonC. & RenshawI. (2015). Nonlinear pedagogy in skill acquisition: An introduction. New York, NY: Routledge.

  • DreyfusS.E. (2004). The five-stage model of adult skill acquisition. Bulletin of Science Technology & Society 24(3) 177181. doi:10.1177/0270467604264992

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FittsP. & PosnerM. (1967). Human performance. Belmont, CA: Brooks/Cole.

  • GallahueD.L. & OsmunJ.C. (2006). Understanding motor development: Infants children adolescents adults. Boston, MA: McGraw-Hill.

  • GathercoleS.E.PickeringS.J.AmbridgeB. & WearingH. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology 40(2) 177190. PubMed doi:10.1037/0012-1649.40.2.177

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GeuzeR.H.SchoemakerM.M. & Smits-EngelsmanB.C.M. (2015). Clinical and research criteria for developmental coordination disorder—Should they be one and the same? Current Developmental Disorders Reports 2(2) 127130. PubMed doi:10.1007/s40474-015-0043-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GreenD.ChambersM.E. & SugdenD.A. (2008). Does subtype of developmental coordination disorder count: Is there a differential effect on outcome following intervention? Human Movement Science 27363382. PubMed doi:10.1016/j.humov.2008.02.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HalsbandU. & LangeR.K. (2006). Motor learning in man: A review of functional and clinical studies. Journal of Physiology 99414424. PubMed doi:10.1016/j.jphysparis.2006.03.007

    • Search Google Scholar
    • Export Citation
  • HendersonS.E.SugdenD.A.BarnettA.L. & Smits-EngelsmanB.C.M. (2010). Movement assessment battery for children—Second edition. Amsterdam, NL: Pearson Assessment and Information B.V.

    • Search Google Scholar
    • Export Citation
  • JohnsonL.BurridgeJ.H. & DemainS.H. (2013). Internal and external focus of attention during gait re-education: An observational study of physical therapist practice in stroke rehabilitation. Physical Therapy 93(7) 957966. PubMed doi:10.2522/ptj.20120300

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jongbloed-PereboomM.JanssenA.J.W.M.SteinerK.SteenbergenB. & Nijhuis-van der SandenM.W.G. (2017). Implicit and explicit motor sequence learning in children born very preterm. Research in Developmental Disabilities 60145152. doi:10.1016/j.ridd.2016.11.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jongbloed-PereboomM.PeetersA.OverveldeA.Nijhuis-van der SandenM.W.G. & SteenbergenB. (2015). Learning of writing letter-like sequences in children with physical and multiple disabilities. Research in Developmental Disabilities 36150161. doi:10.1016/j.ridd.2014.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KalE.van den BrinkH.van der KampJ.GoossensP.van BennekomC. & ScherderE. (2017). How physical therapists instruct patients with stroke: An observational study on attentional focus during gait rehabilitation after stroke. Disability and Rehabilitation. 40(10) 11541165. PubMed doi:10.1080/09638288.2017.1290697

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • MagillR. & AndersonD. (2014). Motor learning and control: Concepts and applications (10th ed.). Singapore, SG: McGraw-Hill Education.

    • Search Google Scholar
    • Export Citation
  • MastersR.S.W. (1992). Knowledge, knerves and know-how: The role of explicit versus implicit knowledge in the breakdown of a complex motor skill under pressure. British Journal of Psychology 83(3) 343358. doi:10.1111/j.2044-8295.1992.tb02446.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MastersR.S.W. & PooltonJ.M. (2012). Advances in implicit motor learning. In N.J. Hodges & A.M. Williams (Eds.) Skill acquisition in sport: Research theory and practice (2nd ed. pp. 5975). London, UK: Routledge.

    • Search Google Scholar
    • Export Citation
  • MastersR.S.W.van der KampJ. & CapioC. (2013). Implicit motor learning by children. In J. Côté & R. Lidor (Eds.) Conditions of children’s talent development in sport (pp. 2140). Morgantown, WV: Fitness Information Technology.

    • Search Google Scholar
    • Export Citation
  • MaxwellJ.P.MastersR.S.W. & EvesF.F. (2000). From novice to no know-how: A longitudinal study of implicit motor learning. Journal of Sports Sciences 18111120. PubMed doi:10.1080/026404100365180

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MaxwellJ.P.MastersR.S.W. & EvesF.F. (2003). The role of working memory in motor learning and performance. Consciousness and Cognition 12(3) 376402. doi:10.1016/S1053-8100(03)00005-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MaxwellJ.P.MastersR.S.W.KerrE. & WeedonE. (2001). The implicit benefit of learning without errors. The Quarterly Journal of Experimental Psychology Section A 54(4) 10491068. doi:10.1080/713756014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PiekJ.P.DawsonL.SmithL.M. & GassonN. (2008). The role of early fine and gross motor development on later motor and cognitive ability. Human Movement Science 27668681. PubMed doi:10.1016/j.humov.2007.11.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RieberM. (1969). Hypothesis testing in children as a function of age. Developmental Psychology 1(4) 389395. doi:10.1037/h0027697

  • SchmidtR.A. & BjorkR.A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science 3(4) 207218. doi:10.1111/j.1467-9280.1992.tb00029.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchoemakerM.M. & Smits-EngelsmanB.C.M. (2015). Is treating motor problems in DCD just a matter of practice and more practice? Current Developmental Disorders Reports 2(2) 150156. PubMed doi:10.1007/s40474-015-0045-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smits-EngelsmanB.C.M.BlankR.Van Der KaayA.C.Mosterd-Van Der MeijsR.Vlugt-Van Den BrandE.PolatajkoH.J. & WilsonP.H. (2013). Efficacy of interventions to improve motor performance in children with developmental coordination disorder: A combined systematic review and meta-analysis. Developmental Medicine & Child Neurology 55(3) 229237. PubMed doi:10.1111/dmcn.12008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SteenbergenB.van der KampJ.VerneauM.Jongbloed-PereboomM. & MastersR.S.W. (2010). Implicit and explicit learning: Applications from basic research to sports for individuals with impaired movement dynamics. Disability and Rehabilitation 32(18) 15091516. PubMed doi:10.3109/09638288.2010.497035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van AbswoudeF.Santos-VieiraB.van der KampJ. & SteenbergenB. (2015). The influence of errors during practice on motor learning in young individuals with cerebral palsy. Research in Developmental Disabilities 45–46353364. doi:10.1016/j.ridd.2015.08.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der KampJ.SteenbergenB. & MastersR.S.W. (2017). Implicit and explicit motor learning in children with unilateral cerebral palsy. Disability and Rehabilitation 3018. doi:10.1080/09638288.2017.1360403

    • Search Google Scholar
    • Export Citation
  • WilsonP.H.RuddockS.Smits-EngelsmanB.PolatajkoH. & BlankR. (2013). Understanding performance deficits in developmental coordination disorder: A meta-analysis of recent research. Developmental Medicine & Child Neurology 55(3) 217228. doi:10.1111/j.1469-8749.2012.04436.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZhuF.F.PooltonJ.M.WilsonM.R.MaxwellJ.P. & MastersR.S.W. (2011). Neural co-activation as a yardstick of implicit motor learning and the propensity for conscious control of movement. Biological Psychology 876673. PubMed doi:10.1016/j.biopsycho.2011.02.004

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 127 126 40
Full Text Views 10 10 4
PDF Downloads 7 7 1
Altmetric Badge
PubMed
Google Scholar