Effects of Foot Placement on Postural Sway in the Anteroposterior and Mediolateral Directions

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

The common practice of standardizing foot placement in postural research and in clinical practice may serve to increase postural sway. The focus of this study was to investigate foot placement strategies in the tandem (anteroposterior, AP) and side-to-side (mediolateral, ML) stance in healthy adults. Foot placement was either experimenter-controlled or selected by the participant. Greater sway was observed for the AP stance than the ML stance, where sway was minimal. When foot placement was self-selected, participants recruited additional degrees of freedom by rotating both feet outward to expand the base of support; they narrowed their stance width in the AP stance only. Self-selection served to decrease AP sway for the AP stance and increase ML sway for both the AP and ML stances. A dynamical measure, the largest Lyapunov exponent, supported the finding that self-selection of foot placement serves to stabilize posture. The implication is that improvements in postural control were due primarily to self-selection of foot placement and not to adjustments in stance width. Experimental and perhaps clinical procedures should be revised to allow participants to self-select foot placement during postural tasks.

Gibbons, Amazeen, and Likens are with the Dept. of Psychology, Arizona State University, Tempe, AZ, USA.

Address author correspondence to Cameron T. Gibbons at Cameron.Gibbons@asu.edu.
  • Akyol, A.D. (2007). Falls in the elderly: What can be done? International Nursing Review, 54(2), 191–196. PubMed ID: 17492994 doi:10.1111/j.1466-7657.2007.00505.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albertsen, I.M., Ghédira, M., Gracies, J.M., & Hutin, É. (2017). Postural stability in young healthy subjects–Impact of reduced base of support, visual deprivation, dual tasking. Journal of Electromyography and Kinesiology, 33(2017), 27–33. doi:10.1016/j.jelekin.2017.01.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alfieri, F.M., Riberto, M., Lopes, J.A.F., Filippo, T.R., Imamura, M., & Battistella, L.R. (2016). Postural control of healthy elderly individuals compared to elderly individuals with stroke sequelae. The Open Neurology Journal, 10, 1–8. PubMed ID: 27053967 doi:10.2174/1874205X01610010001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allum, J.H.J., Adkin, A.L., Carpenter, M.G., Held-Ziolkowska, M., Honegger, F., & Pierchala, K. (2001). Trunk sway measures of postural stability during clinical balance tests: Effects of a unilateral vestibular deficit. Gait & Posture, 14(3), 227–237. PubMed ID: 11600326 doi:10.1016/S0966-6362(01)00132-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Assländer, L., & Peterka, R.J. (2014). Sensory reweighting dynamics in human postural control. Journal of Neurophysiology, 111(9), 1852–1864. doi:10.1152/jn.00669.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Audu, M.L., Kirsch, R.F., & Triolo, R.J. (2003). A computational technique for determining the ground reaction forces in human bipedal stance. Journal of Applied Biomechanics, 19(4), 361–371. doi:10.1123/jab.19.4.361

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balasubramaniam, R., & Wing, A.M. (2002). The dynamics of standing balance. Trends in Cognitive Sciences, 6(12), 531–536. PubMed ID: 12475714 doi:10.1016/S1364-6613(02)02021-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bekkers, E.M., Dockx, K., Heremans, E., Vercruysse, S., Verschueren, S.M., Mirelman, A., & Nieuwboer, A. (2014). The contribution of proprioceptive information to postural control in elderly and patients with Parkinson’s disease with a history of falls. Frontiers in Human Neuroscience, 8, 1–9. doi:10.3389/fnhum.2014.00939

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, N.A. (1967). The problem of the interrelation of coordination and localization. H.T.A. Whiting (Ed.), Human motor actions: Bernstein reassessed (Chap. II, pp. 77–119). Holland: Elsevier Science Publishers B. V.

    • Search Google Scholar
    • Export Citation
  • Black, F.O., Wall, C., Rockette, H.E., & Kitch, R. (1982). Normal subject postural sway during the Romberg test. American Journal of Otolaryngology, 3(5), 309–318. PubMed ID: 7149143 doi:10.1016/S0196-0709(82)80002-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F.C., & Stoffregen, T.A. (2012). Specificity of postural sway to the demands of a precision task at sea. Journal of Experimental Psychology: Applied, 18(2), 203–212. PubMed ID: 22181030

    • Search Google Scholar
    • Export Citation
  • Chen, L.C., Metcalfe, J.S., Chang, T.Y., Jeka, J.J., & Clark, J.E. (2008). The development of infant upright posture: Sway less or sway differently? Experimental Brain Research, 186(2), 293–303. PubMed ID: 18057920 doi:10.1007/s00221-007-1236-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiari, L., Rocchi, L., & Cappello, A. (2002). Stabilometric parameters are affected by anthropometry and foot placement. Clinical Biomechanics, 17(9), 666–677. doi:10.1016/S0268-0033(02)00107-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, J.J., & De Luca, C.J. (1993). Open-loop and closed-loop control of posture: A random-walk analysis of center-of-pressure trajectories. Experimental Brain Research, 95(2), 308–318. PubMed ID: 8224055 doi:10.1007/BF00229788

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costs of falls among older adults.(2015). Retrieved from http://www.cdc.gov/homeandrecreationalsafety/falls/fallcost.html

    • Export Citation
  • Davis, J.R., Carpenter, M.G., Tschanz, R., Meyes, S., Debrunner, D., Burger, J., & Allum, J.H. (2010). Trunk sway reductions in young and older adults using multi-modal biofeedback. Gait & Posture, 31(4), 465–472. PubMed ID: 20206528 doi:10.1016/j.gaitpost.2010.02.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, B.L., Steiger, M.J., Thompson, P.D., & Marsden, C.D. (1993). Effect of vision and stance width on human body motion when standing: Implications for afferent control of lateral sway. Journal of Physiology, 469(1), 479–499. doi:10.1113/jphysiol.1993.sp019824

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deffeyes, J.E., Harbourne, R.T., Kyvelidou, A., Stuberg, W.A., & Stergiou, N. (2009). Nonlinear analysis of sitting postural sway indicates developmental delay in infants. Clinical Biomechanics, 24(7), 564–570. PubMed ID: 19493596 doi:10.1016/j.clinbiomech.2009.05.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, C., Bleakley, C.M., Hertel, J., Caulfield, B., Ryan, J., & Delahunt, E. (2015). Laboratory measures of postural control during the star excursion balance test after acute first-time lateral ankle sprain. Journal of Athletic Training, 50(6), 651–664. PubMed ID: 25811845 doi:10.4085/1062-6050-50.1.09

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donker, S.F., Ledebt, A., Roerdink, M., Savelsbergh, G.J., & Beek, P.J. (2008). Children with cerebral palsy exhibit greater and more regular postural sway than typically developing children. Experimental Brain Research, 184(3), 363–370. PubMed ID: 17909773 doi:10.1007/s00221-007-1105-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, T.L., Dugan, E.L., Humphries, B., & Newton, R.U. (2004). Discriminating between elderly and young using a fractal dimension analysis of centre of pressure. International Journal of Medical Sciences, 1(1), 11–20. PubMed ID: 15912186 doi:10.7150/ijms.1.11

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Florence, C.S., Bergen, G., Atherly, A., Burns, E., Stevens, J., & Drake, C. (2018). Medical costs of fatal and nonfatal falls in older adults. Journal of American Geriatrics, 66(4), 693–698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, L., Riley, M.A., Mitra, S., & Turvey, M.T. (2000). Advantages of rhythmic movements at resonance: Minimal active degrees of freedom, minimal noise, and maximal predictability. Journal of Motor Behavior, 32(1), 3–8. PubMed ID: 11008266 doi:10.1080/00222890009601354

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greve, C., Zijlstra, W., Hortobágyi, T., & Bongers, R.M. (2015). Not all is lost: Old adults retain flexibility in motor behavior during sit-to-stand. PLoS ONE, 8(10), 1–11.

    • Search Google Scholar
    • Export Citation
  • Hammami, R., Behm, D.G., Chtara, M., Othman, A.B., & Chaouachi, A. (2014). Comparison of static balance and the role of vision in elite athletes. Journal of Human Kinetics, 41(1), 33–41. doi:10.2478/hukin-2014-0030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harbourne, R.T., & Stergiou, N. (2009). Movement variability and the use of nonlinear tools: Principles to guide physical therapist practice. Physical Therapy, 89(3), 267–282. PubMed ID: 19168711 doi:10.2522/ptj.20080130

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henry, S.M., Fung, J., & Horak, F.B. (2001). Effect of stance width on multidirectional postural responses. Journal of Neurophysiology, 85(2), 559–570. PubMed ID: 11160493 doi:10.1152/jn.2001.85.2.559

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hillman, C.H., Rosengren, K.S., & Smith, D.P. (2004). Emotion and motivated behavior: Postural adjustments to affective picture viewing. Biological Psychology, 66(1), 51–62. PubMed ID: 15019170 doi:10.1016/j.biopsycho.2003.07.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hof, A.L., Gazendam, M.G.J., & Sinke, W.E. (2005). The condition for dynamic stability. Journal of Biomechanics, 38(1), 1–8. PubMed ID: 15519333 doi:10.1016/j.jbiomech.2004.03.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F.B. (2006). Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age and Ageing, 35(S2), ii7–ii11. doi:10.1093/ageing/afl077

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F.B., & Nashner, L.M. (1986). Central programming of postural movements: Adaptation to altered support-surface configurations. Journal of Neurophysiology, 55(6), 1369–1381. PubMed ID: 3734861 doi:10.1152/jn.1986.55.6.1369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, W.L., Scholz, J.P., Schöner, G., Jeka, J.J., & Kiemel, T. (2007). Control and estimation of posture during quiet stance depends on multijoint coordination. Journal of Neurophysiology, 97(4), 3024–3035. PubMed ID: 17314243 doi:10.1152/jn.01142.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, I., Lee, K., Ward, J., & Tracy, J. (2017). Self-optimization of stride length among experienced and inexperienced runners. International Journal of Exercise Science, 10(3), 446–453. PubMed ID: 28515840

    • Search Google Scholar
    • Export Citation
  • Hur, P., Shorter, K.A., Mehta, P.G., & Hsiao-Wecksler, E.T. (2012). Invariant density analysis: Modeling and analysis of the postural control system using Markov chains. IEEE Transactions on Biomedical Engineering, 59(4), 1094–1100. PubMed ID: 22262678 doi:10.1109/TBME.2012.2184105

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeka, J.J., Allison, L.K., & Kiemel, T. (2010). The dynamics of visual reweighting in healthy and fall-prone older adults. Journal of Motor Behavior, 42(4), 197–208. PubMed ID: 20501430 doi:10.1080/00222895.2010.481693

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeka, J.J., & Lackner, J.R. (1995). The role of haptic cues from rough and slippery surfaces in human postural control. Experimental Brain Research, 103(2), 267–276. PubMed ID: 7789434 doi:10.1007/BF00231713

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jilk, D.J., Safavynia, S.A., & Ting, L.H. (2014). Contribution of vision to postural behaviors during continuous support-surface translations. Experimental Brain Research, 232(1), 169–180. doi:10.1007/s00221-013-3729-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonsson, E., Seiger, Å., & Hirschfeld, H. (2005). Postural steadiness and weight distribution during tandem stance in healthy young and elderly adults. Clinical Biomechanics, 20(2), 202–208. PubMed ID: 15621326 doi:10.1016/j.clinbiomech.2004.09.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantz, H., & Schreiber, T. (2004). Nonlinear time series analysis. Cambridge, UK: Cambridge University Press.

  • Kaplan, D., & Glass, L. (2012). Understanding nonlinear dynamics. New York, NY: Springer Science & Business Media.

  • Kapteyn, T.S., Bles, W., Njioliktjien, J., Kodde, L., Massen, C.H., & Mol, J. (1983). Standardization in platform stabilometry being a part of posturography. Agressologie, 24(7), 321–326. PubMed ID: 6638321

    • Search Google Scholar
    • Export Citation
  • Khasnis, A., & Gokula, R.M. (2003). Romberg’s test. Journal of Postgraduate Medicine, 49(2), 169–172. PubMed ID: 12867698

  • Kim, J.W., Kwon, Y., Jeon, H.M., Bang, M.J., Jun, J.H., Eom, G.M., & Lim, D.H. (2014). Feet distance and static postural balance: Implication on the role of natural stance. Bio-medical Materials and Engineering, 24(6), 2681–2688. PubMed ID: 25226972

    • Search Google Scholar
    • Export Citation
  • Kinsella-Shaw, J.M., Harrison, S.J., Colon-Semenza, C., & Turvey, M.T. (2006). Effects of visual environment on quiet standing by young and old adults. Journal of Motor Behavior, 38(4), 251–264. PubMed ID: 16801318 doi:10.3200/JMBR.38.4.251-264

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirby, R.L., Price, N.A., & MacLeod, D.A. (1987). The influence of foot position on standing balance. Journal of Biomechanics, 20(4), 423–427. PubMed ID: 3597457 doi:10.1016/0021-9290(87)90049-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ladislao, L., & Fioretti, S. (2007). Nonlinear analysis of posturographic data. Medical & Biological Engineering & Computing, 45(7), 679–688. PubMed ID: 17611787 doi:10.1007/s11517-007-0213-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Turvey, M.T. (Eds.). (1996). Dexterity and its development. Mahwah, NJ: Lawrence Erlbaum Associates.

  • Lin, D., Seol, H., Nussbaum, M.A., & Madigan, M.L. (2008). Reliability of COP-based postural sway measures and age-related differences. Gait & Posture, 28(2), 337–342. PubMed ID: 18316191 doi:10.1016/j.gaitpost.2008.01.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lord, S.R. (2006). Visual risk factors for falls in older people. Age and Ageing, 35(S2), ii42–ii45. doi:10.1093/ageing/afl085

  • Maki, B.E., Holliday, P.J., & Topper, A.K. (1991). Fear of falling and postural performance in the elderly. Journal of Gerontology, 46(4), 123–131. PubMed ID: 2071833 doi:10.1093/geronj/46.4.M123

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, P.V., van Emmerik, R.E.A., & Newell, K.M. (1989). The effects of practice on limb kinematics in a throwing task. Journal of Motor Behavior, 21(3), 245–264. PubMed ID: 15136263 doi:10.1080/00222895.1989.10735480

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIlroy, W.E., & Maki, B.E. (1997). Preferred placement of feet during quiet stance: Development of standardized foot placements for balance testing. Clinical Biomechanics, 12(1), 66–70. PubMed ID: 11415674 doi:10.1016/S0268-0033(96)00040-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlo, A., Zemp, D., Zanda, E., Rocchi, S., Meroni, F., Tettamanti, M., … Quadri, P. (2012). Postural stability and history of falls in cognitively able older adults: The Canton Ticino study. Gait & Posture, 36(4), 662–666. PubMed ID: 22832469 doi:10.1016/j.gaitpost.2012.06.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitra, S., & Fraizer, E.V. (2004). Effects of explicit sway-minimization on postural–suprapostural dual-task performance. Human Movement Science, 23(1), 1–20. PubMed ID: 15201038 doi:10.1016/j.humov.2004.03.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitra, S., Riley, M.A., & Turvey, M.T. (1997). Chaos in human rhythmic movement. Journal of Motor Behavior, 29(3), 195–198. PubMed ID: 12453778 doi:10.1080/00222899709600834

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murata, A., & Iwase, H. (1998). Chaotic analysis of body sway. Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 3, 1557–1560.

    • Search Google Scholar
    • Export Citation
  • Newell, K.M., van Emmerik, R.E.A., Lee, D., & Sprague, R.L. (1993). On postural stability and variability. Gait & Posture, 1(4), 225–230. doi:10.1016/0966-6362(93)90050-B

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nichols, D., Glenn, T.M., & Hutchinson, K.J. (1995). Changes in the mean center of balance during balance testing in young adults. Physical Therapy, 75(8), 699–706. PubMed ID: 7644574 doi:10.1093/ptj/75.8.699

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otten, E. (1999). Balancing on a narrow ridge: Biomechanics and control. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 354(1385), 869–875. PubMed ID: 10382221 doi:10.1098/rstb.1999.0439

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Packard, N.H., Crutchfield, J.P., Farmer, J.D., & Shaw, R.S. (1980). Geometry from a time series. Physical Review Letters, 45(9), 712–716. doi:10.1103/PhysRevLett.45.712

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterka, R.J., & Loughlin, P.J. (2004). Dynamic regulation of sensorimotor integration in human postural control. Journal of Neurophysiology, 91(1), 410–423. PubMed ID: 13679407 doi:10.1152/jn.00516.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinter, I.J., van Swigchem, R., van Soest, A.K., & Rozendaal, L.A. (2008). The dynamics of postural sway cannot be captured using a one-segment inverted pendulum model: A PCA on segment rotations during unperturbed stance. Journal of Neurophysiology, 100(6), 3197–3208. PubMed ID: 18829852 doi:10.1152/jn.01312.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollock, A.S., Durward, B.R., Rowe, P.J., & Paul, J.P. (2000). What is balance? Clinical Rehabilitation, 14(4), 402–406. PubMed ID: 10945424 doi:10.1191/0269215500cr342oa

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulain, I., & Giraudet, G. (2008). Age-related changes of visual contribution in posture control. Gait & Posture, 27(1), 1–7. PubMed ID: 17442574 doi:10.1016/j.gaitpost.2007.02.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymakers, J.A., Samson, M.M., & Verhaar, H.J.J. (2005). The assessment of body sway and the choice of the stability parameter(s). Gait & Posture, 21(1), 48–58. PubMed ID: 15536033 doi:10.1016/j.gaitpost.2003.11.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redfern, M.S., & Furman, J.M. (1993). Postural sway of patients with vestibular disorders during optic flow. Journal of Vestibular Research: Equilibrium & Orientation, 4(3), 221–230.

    • Search Google Scholar
    • Export Citation
  • Riley, M.A., & Clark, S. (2003). Recurrence analysis of human postural sway during the sensory organization test. Neuroscience Letters, 342(1), 45–48. doi:10.1016/S0304-3940(03)00229-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley, M.A., Mitra, S., Stoffregen, T.A., & Turvey, M.T. (1997). Influences of body lean and vision on unperturbed postural sway. Motor Control, 1(3), 229–246. doi:10.1123/mcj.1.3.229

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley, M.A., & Turvey, M.T. (2002). Variability and determinism in motor behavior. Journal of Motor Behavior, 34(2), 99–125. PubMed ID: 12057885 doi:10.1080/00222890209601934

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roerdink, M., De Haart, M., Daffertshofer, A., Donker, S.F., Geurts, A.C.H., & Beek, P.J. (2006). Dynamical structure of center-of-pressure trajectories in patients recovering from stroke. Experimental Brain Research, 174(2), 256–269. PubMed ID: 16685508 doi:10.1007/s00221-006-0441-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenstein, M.T., Collins, J.J., & De Luca, C.J. (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena, 65(1), 117–134. doi:10.1016/0167-2789(93)90009-P

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, N.B., Taylor, W.R., Madigan, M.L., & Nussbaum, M.A. (2012). The spectral content of postural sway during quiet stance: Influences of age, vision and somatosensory inputs. Journal of Electromyography and Kinesiology, 22(1), 131–136. PubMed ID: 22100720 doi:10.1016/j.jelekin.2011.10.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sozzi, S., Honeine, J.L., Do, M.C., & Schieppati, M. (2013). Leg muscle activity during tandem stance and the control of body balance in the frontal plane. Clinical Neurophysiology, 124(6), 1175–1186. PubMed ID: 23294550 doi:10.1016/j.clinph.2012.12.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenbergen, B., Marteniuk, R.G., & Kalbfleisch, L.E. (1995). Achieving coordination in prehension: Joint freezing and postural contributions. Journal of Motor Behavior, 27(4), 333–348. PubMed ID: 12529229 doi:10.1080/00222895.1995.9941722

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taken, F. (1981). Detecting strange attractors in turbulence. In D. Rand& L. Young (Series Eds.), Lecture Notes in Mathematics: Vol. 898. Dynamical systems and turbulence (pp. 366–381). Berlin, DE: Springer-Verlag.

    • Search Google Scholar
    • Export Citation
  • Turvey, M.T., Fitch, H.L., & Tuller, B. (1982). The Bernstein perspective: The concept of muscle linkage or coordinative structure. In J.A. Kelso (Ed.), Human motor behavior: An introduction (pp. 253–270). Hillsdale, NJ: Lawrence Erlbaum Assoc.

    • Search Google Scholar
    • Export Citation
  • van Emmerik, R.E., Rosenstein, M.T., McDermott, W.J., & Hamill, J. (2004). A nonlinear dynamics approach to human movement. Journal of Applied Biomechanics, 20(4), 396–420. doi:10.1123/jab.20.4.396

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Emmerik, R.E., & van Wegen, E.E. (2002). On the functional aspects of variability in postural control. Exercise and Sport Sciences Reviews, 30(4), 177–183. PubMed ID: 12398115 doi:10.1097/00003677-200210000-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vereijken, B., Emmerik, R.E.V., Whiting, H.T.A., & Newell, K.M. (1992). Free(z)ing degrees of freedom in skill acquisition. Journal of Motor Behavior, 24(1), 133–142. doi:10.1080/00222895.1992.9941608

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., Jordan, K., & Newell, K.M. (2012). Coordination patterns of foot dynamics in the control of upright standing. Motor Control, 16(3), 425–443. PubMed ID: 23066535 doi:10.1123/mcj.16.3.425

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., Ko, J.H., Challis, J.H., & Newell, K.M. (2014). The degrees of freedom problem in human standing posture: Collective and component dynamics. PLoS ONE, 9(1), e85414. PubMed ID: 24427307 doi:10.1371/journal.pone.0085414

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., & Newell, K.M. (2012). Asymmetry of foot position and weight distribution channels the inter-leg coordination dynamics of standing. Experimental Brain Research, 222(4), 333–344. PubMed ID: 22990287 doi:10.1007/s00221-012-3212-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winter, D.A. (1995). Human balance and posture control during standing and walking. Gait & Posture, 3(4), 193–214. doi:10.1016/0966-6362(96)82849-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winter, D.A., Patla, A.E., Prince, F., Ishac, M., & Gielo-Perczak, K. (1998). Stiffness control of balance in quiet standing. Journal of Neurophysiology, 80(3), 1211–1221. PubMed ID: 9744933 doi:10.1152/jn.1998.80.3.1211

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollacott, M., & Shumway-Cook, A. (2002). Attention and the control of posture and gait: A review of an emerging area of research. Gait & Posture, 16(1), 1–14. PubMed ID: 12127181 doi:10.1016/S0966-6362(01)00156-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, N. (1995). Chaotic swaying of the upright posture. Human Movement Science, 14(6), 711–726. doi:10.1016/0167-9457(95)00032-1

  • Yardley, L., Gardner, M., Leadbetter, A., & Lavie, N. (1999). Effect of articulatory and mental tasks on postural control. Neuroreport, 10(2), 215–219. PubMed ID: 10203311 doi:10.1097/00001756-199902050-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, T.T., Cluff, T., & Balasubramaniam, R. (2014). Visual reliance for balance control in older adults persists when visual information is disrupted by artificial feedback delays. PLoS ONE, 9(3), 1–9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y., Chung, H.C., Hemingway, L., & Stoffregen, T.A. (2013). Standing body sway in women with and without morning sickness in pregnancy. Gait & Posture, 37(1), 103–107. PubMed ID: 22824679 doi:10.1016/j.gaitpost.2012.06.021

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 313 313 27
Full Text Views 8 8 0
PDF Downloads 3 3 0