Comparing Different Methods to Create a Linear Model for Uncontrolled Manifold Analysis

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

An essential step in uncontrolled manifold analysis is creating a linear model that relates changes in elemental variables to changes in performance variables. Such linear models are usually created by means of an analytical method. However, a multiple regression analysis is also suggested. Whereas the analytical method includes only averages of joint angles, the regression method uses the distribution of all joint angles. We examined whether the latter model is more suitable to describe manual reaching movements. The relation between estimated and measured fingertip-position deviations from the mean of individual trials, the relation between fingertip variability and nongoal-equivalent variability, goal-equivalent variability, and nongoal-equivalent variability indicated that the linear model created with the regression method gives a more accurate description of the reaching data. Therefore, we suggest the usage of the regression method to create the linear model for uncontrolled manifold analysis in tasks that require the approximation of the linear model.

Tuitert is with Aix-Marseille University, CNRS, Institut des Sciences du Mouvement, Marseille, France. Tuitert, Valk, Otten, Golenia, and Bongers are with the University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, the Netherlands.

Address author correspondence to Inge Tuitert at i.tuitert@umcg.nl.
  • Ambike, S., Mattos, D., Zatsiorsky, V.M., & Latash, M.L. (2016). Synergies in the space of control variables within the equilibrium-point hypothesis. Neuroscience, 315, 150–161. PubMed ID: 26701299 doi:10.1016/j.neuroscience.2015.12.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, D.P., Smith, B.A., Wu, J., & Ulrich, B.D. (2007). Uncontrolled manifold analysis of segmental angle variability during walking: Preadolescents with and without Down syndrome. Experimental Brain Research, 183, 511–521. PubMed ID: 17717659 doi:10.1007/s00221-007-1066-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, MI: Lawrence Erlbaum Associates.

  • de Freitas, S.M., & Scholz, J.P. (2010). A comparison of methods for identifying the Jacobian for uncontrolled manifold variance analysis. Journal of Biomechanics, 43(4), 775–777. PubMed ID: 19922938 doi:10.1016/j.jbiomech.2009.10.033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Freitas, S.M., Scholz, J.P., & Latash, M.L. (2010). Analyses of joint variance related to voluntary whole-body movements performed in standing. Journal of Neuroscience Methods, 188(1), 89–96. doi:10.1016/j.jneumeth.2010.01.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domkin, D., Laczko, J., Djupsjöbacka, M., Jaric, S., & Latash, M.L. (2005). Joint angle variability in 3D bimanual pointing: Uncontrolled manifold analysis. Experimental Brain Research, 163, 44–57. PubMed ID: 15668794 doi:10.1007/s00221-004-2137-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golub, G.H., & Loan, C.F.V. (1996). Matrix computations. Baltimore, MD: Johns Hopkins University Press.

  • Greve, C., Zijlstra, W., Hortobágyi, T., & Bongers, R.M. (2013). Not all is lost: Old adults retain flexibility in motor behavior during sit-to-stand. PLoS ONE, 8(10), 77760. PubMed ID: 24204952 doi:10.1371/journal.pone.0077760

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacquier-Bret, J., Rezzoug, N., & Gorce, P. (2009). Adaptation of joint flexibility during a reach-to-grasp movement. Motor Control, 13(3), 342–361. PubMed ID: 19799170 doi:10.1123/mcj.13.3.342

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, N., Shinohara, M., Zatsiorsky, V.M., & Latash, M.L. (2004). Learning multi-finger synergies: An uncontrolled manifold analysis. Experimental Brain Research, 157(3), 336–350. PubMed ID: 15042264 doi:10.1007/s00221-004-1850-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klous, M., Danna-dos-Santos, A., & Latash, M.L. (2010). Multi-muscle synergies in a dual postural task: Evidence for the principle of superposition. Experimental Brain Research, 202(2), 457–471. PubMed ID: 20047089 doi:10.1007/s00221-009-2153-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamoorthy, V., Scholz, J.P., & Latash, M.L. (2007). The use of flexible arm muscle synergies to perform an isometric stabilization task. Clinical Neurophysiology, 118(3), 525–537. PubMed ID: 17204456 doi:10.1016/j.clinph.2006.11.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krüger, M., Borbély, B., Eggert, T., & Straube, A. (2012). Synergistic control of joint angle variability: Influence of target shape. Human Movement Science, 31, 1071–1089. doi:10.1016/j.humov.2011.12.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Scholz, J.P., & Schöner, G. (2007). Toward a new theory of motor synergies. Motor Control, 11, 276–308. PubMed ID: 17715460 doi:10.1123/mcj.11.3.276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, S.E., & Delaney, H.D. (1990). Designing experiments and analyzing data. Pacific Grove, CA: Brooks/Cole Publishing Company.

  • Muceli, S., Falla, D., & Farina, D. (2014). Reorganization of muscle synergies during multidirectional reaching in the horizontal plane with experimental muscle pain. Journal of Neurophysiology, 111(8), 1615–1630. PubMed ID: 24453279 doi:10.1152/jn.00147.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, H., & Sternad, D. (2003). A randomization method for the calculation of covariation in multiple nonlinear relations: Illustrated with the example of goal-directed movements. Biological Cybernetics, 89, 22–33.

    • Search Google Scholar
    • Export Citation
  • Reschechtko, S., Latash, M.L. (2017). Stability of hand force production. I. Hand level control variables and multifinger synergies. Journal of Neurophysiology, 118(6), 3152–3164. PubMed ID: 28904102 doi:10.1152/jn.00485.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, V., Kallen, R., Riley, M.A., & Richardson, M.J. (2015). Can discrete joint action be synergistic? Studying the stabilization of interpersonal hand coordination. Journal of Experimental Psychology: Human Perception and Performance, 41(5), 1223–1235. PubMed ID: 26052696 doi:10.1037/xhp0000083

    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., & Schöner, G. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research, 126(3), 289–306. PubMed ID: 10382616 doi:10.1007/s002210050738

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., Schöner, G., & Latash, M.L. (2000). Identifying the control structure of multijoint coordination during pistol shooting. Experimental Brain Research, 135, 382–404. PubMed ID: 11146817 doi:10.1007/s002210000540

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schöner, G., & Scholz, J.P. (2007). Analyzing variance in multi-degree-of-freedom movements: Uncovering structure versus extracting correlations. Motor Control, 11(3), 259–275. doi:10.1123/mcj.11.3.259

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shim, J.K., Hsu, J., Karol, S., & Hurley, B.F. (2008). Strength training increases training-specific multifinger coordination in humans. Motor Control, 12, 311–329. PubMed ID: 18955741 doi:10.1123/mcj.12.4.311

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinohara, M., Scholz, J.P., Zatsiorsky, V.M., & Latash, M.L. (2004). Finger interaction during accurate multi-finger force production tasks in young and elderly persons. Experimental Brain Research, 156(3), 282–292. PubMed ID: 14985892 doi:10.1007/s00221-003-1786-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sternad, D. (2018). It’s not (only) the mean that matters: Variability, noise and exploration in skill learning. Current Opinion in Behavioral Sciences, 20, 183–195. doi:10.1016/j.cobeha.2018.01.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sternad, D., Park, S.W., Muller, H., & Hogan, N. (2010). Coordinate dependence of variability analysis. PLoS Computational Biology, 6(4), e1000751. PubMed ID: 20421930 doi:10.1371/journal.pcbi.1000751

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Togo, S., Kagawa, T., & Uno, Y. (2016). Changes in motor synergies for tracking movement and responses to perturbations depend on task-irrelevant dimension constraints. Human Movement Science, 46, 104–116. PubMed ID: 26741256 doi:10.1016/j.humov.2015.12.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, Y., Scholz, J.P., & Schöner, G. (2002). Goal-equivalent joint coordination in pointing: Affect of vision and arm dominance. Motor Control, 6(2), 183–207. PubMed ID: 12122226 doi:10.1123/mcj.6.2.183

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valk, T.A., Mouton, L.J., & Bongers, R.M. (2016). Joint-angle coordination patterns ensure stabilization of a body-plus-tool system in point-to-point movements with a rod. Frontiers in Psychology, 7(826), 826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Andel, C.J., Wolterbeek, N., Doorenbosch, C.A.M., Veeger, D.H.E.J., & Harlaar, J. (2008). Complete 3D kinematics of upper extremity functional tasks. Gait & Posture, 27(1), 120–127. PubMed ID: 17459709 doi:10.1016/j.gaitpost.2007.03.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Der Steen, M.C., & Bongers, R.M. (2011). Joint angle variability and co-variation in a reaching with a rod task. Experimental Brain Research, 208, 411–422. PubMed ID: 21127846 doi:10.1007/s00221-010-2493-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verrel, J. (2010). Distributional properties and variance-stabilizing transformations for measures of uncontrolled manifold effects. Journal of Neuroscience Methods, 191(2), 166–170. PubMed ID: 20599556 doi:10.1016/j.jneumeth.2010.06.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., Van Der Helm, F.C.T., Veeger, H.E.J., Makhsous, M., Van Roy, P., Anglin, C., … Buchholz, B. (2005). ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: Shoulder, elbow, wrist and hand. Journal of Biomechanics, 38(5), 981–992. PubMed ID: 15844264 doi:10.1016/j.jbiomech.2004.05.042

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y.H., Pazin, N., Zatsiorsky, V.M., & Latash, M.L. (2012). Practicing elements versus practicing coordination: Changes in the structure of variance. Journal of Motor Behavior, 44(6), 471–478. PubMed ID: 23237469 doi:10.1080/00222895.2012.740101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J.F., Scholz, J.P., & Latash, M.L. (2007). The role of kinematic redundancy in adaptation of reaching. Experimental Brain Research, 176, 54–69. PubMed ID: 16874517 doi:10.1007/s00221-006-0602-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaiontz, C. (2018). Real statistics using excel. Retrieved from www.real-statistics.com

    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 93 93 22
Full Text Views 6 6 0
PDF Downloads 2 2 0