Combined Hip Angle Variability and RPE Could Determine Gait Transition in Elite Race Walkers

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

The aim of this study was to investigate the role of energy cost in locomotion, specifically the rate of perceived exertion and movement variability in gait transition for eight race walkers (RW) and seven nonrace walkers (NRW). We hypothesized that a group of correlated variables could serve as combined triggers. Participants performed a preferred transition speed (PTS) test, exhibiting a higher PTS for RW (10.35 ± 0.28 km/hr) than for NRW (7.07 ± 0.69 km/hr), because RW engaged in race walking before switching to running. None of the variables increased before transition and dropped in PTS, which challenged the hypothesis of a unique transition variable in gait transitions. Principal component analysis showed that combined hip angle variability and rate of perceived exertion could determine gait transitions in elite RW and NRW. Thus, human gait transition may be triggered by a pool of determinant variables, rather than by a single factor.

Heugas and Siegler are with CIAMS Laboratory (Complexité, Innovation, Activités Motrices et Sportives), Université Paris-Sud, Orsay Cedex, France; Université Paris-Saclay, Orsay Cedex, France; and CIAMS Laboratory, Université d’Orléans, Orléans, France.

Address author correspondence to Anne-Marie Heugas at anne-marie.heugas@u-psud.fr.
  • Beaupied, H., Multon, F., & Delamarche, P. (2003). Does training have consequences for the walk-run transition speed? Human Movement Science, 22(1), 1–12. PubMed ID: 12623177 doi:10.1016/S0167-9457(02)00139-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borg, G. (1986). Psychophysical studies of effort and exertion: Some historical, theoretical and empirical aspects. In G. Borg & D. Ottoson (Eds.), The perception of exertion in physical work (pp. 3–12). London, UK: Macmillan.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brisswalter, J., Fougeron, B., & Legros, P. (1998). Variability in energy cost and walking gait during race walking in competitive race walkers. Medicine & Science in Sports & Exercise, 30, 1451–1455. PubMed ID: 9741616

    • Search Google Scholar
    • Export Citation
  • Brisswalter, J., & Mottet, D. (1996). Energy cost and stride duration variability at preferred transition gait speed between walking and running. Canadian Journal of Applied Physiology, 21, 471–480. PubMed ID: 8959313 doi:10.1139/h96-041

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavagna, G.A., & Franzetti, P. (1981). Mechanics of competition walking. The Journal of Physiology, 315, 243–251. PubMed ID: 7310710 doi:10.1113/jphysiol.1981.sp013745

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comrey, A.L., & Lee, H.B. (1992). A first course in factor analysis. Hillsdale, NJ: Lawrence Erlbaum associates.

  • Diedrich, F.J., & Warren, W.H., Jr. (1995). Why change gaits? Dynamics of the walk-run transition. Journal of Experimental Psychology: Human Perception and Performance, 21, 183–202. PubMed ID: 7707029

    • Search Google Scholar
    • Export Citation
  • di Prampero, P. (1986). The energy cost of human locomotion on land and in water. International Journal of Sports Medicine, 7(2), 55–72. PubMed ID: 3519480 doi:10.1055/s-2008-1025736

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenmann, J.C., Brisko, N., Shadrick, D., & Welsh, S. (2003). Comparative analysis of the Cosmed Quark b2 and K4b2 gas analysis systems during submaximal exercise. Journal of Sports Medicine & Physical Fitness, 43(2), 150–155. PubMed ID: 12853896

    • Search Google Scholar
    • Export Citation
  • Farris, D.J., & Sawicki, G.S. (2012). The mechanics and energetics of human walking and running: A joint level perspective. Journal of the Royal Society, Interface, 9(66), 110–118. PubMed ID: 21613286 doi:10.1098/rsif.2011.0182

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hampson, D.B., St Clair Gibson, A., Lambert, M.I., & Noakes, T.D. (2001). The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Medicine, 31(13), 935–952. PubMed ID: 11708402 doi:10.2165/00007256-200131130-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, B., & Bissas, A. (2013). Analysis of lower limb internal kinetics and electromyography in elite race walking. Journal of Sports Sciences, 31(11), 1222–1232. PubMed ID: 23464365 doi:10.1080/02640414.2013.777763

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoga, K., Ae, M., Enomoto, Y., & Fujii, N. (2003). Mechanical energy flow in the recovery leg of elite race walkers. Sports Biomechanics, 2, 1–13. PubMed ID: 14658242 doi:10.1080/14763140308522804

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howley, E.T., Bassett, D.R., Jr., & Welch, H.G. (1995). Criteria for maximal oxygen uptake: Review and commentary. Medicine & Science in Sports & Exercise, 27, 1292–1301. PubMed ID: 8531628 doi:10.1249/00005768-199509000-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hreljac, A., Imamura, R.T., Escamilla, R.F., Edwards, W.B., & MacLeod, T. (2008). The relationship between joint kinetic factors and the walk-run gait transition speed during human locomotion. Journal of Applied Biomechanics, 24, 149–157. PubMed ID: 18579907 doi:10.1123/jab.24.2.149

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International Association of Athletics Federation. (2013). IAAF competitions rules 2014–2015. Retrieved from http://www.iaaf.org/about-iaaf/documents/rules-regulations#rules

    • Export Citation
  • Kao, J.C., Ringenbach, S.D., & Martin, P.E. (2003). Gait transitions are not dependent on changes in intralimb coordination variability. Journal of Motor Behavior, 35(3), 211–214. PubMed ID: 12873836 doi:10.1080/00222890309602134

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lecoutre, B., & Poitevineau, J. (1992). PAC (Programme d’Analyse des Comparaisons): Manuel de référence. Montreuil, France: CISIA-CERESTA. Retrieved from http://lmrs.math.cnrs.fr/Persopage/Lecoutre/telechargements/LePAC2Englishsetup.zip

    • Search Google Scholar
    • Export Citation
  • Medbo, J.I., & Tabata, I. (1989). Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. Journal of Applied Physiology, 67, 1881–1886. PubMed ID: 2600022 doi:10.1152/jappl.1989.67.5.1881

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavei, G., Cazzola, D., La Torre, A., & Minetti, A.E. (2014). The biomechanics of race walking: Literature overview and new insights. European Journal of Sport Science, 14(7), 661–670. PubMed ID: 24438531 doi:10.1080/17461391.2013.878755

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pires, N.J., Lay, B.S., & Rubenson, J. (2014). Joint-level mechanics of the walk-to-run transition in humans. The Journal of Experimental Biology, 217(Pt. 19), 3519–3527. PubMed ID: 25104752 doi:10.1242/jeb.107599

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prilutsky, B.I., & Gregor, R.J. (2001). Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions. Journal of Experimental Biology, 204, 2277–2287. PubMed ID: 11507111

    • Search Google Scholar
    • Export Citation
  • Ranisavljev, I., Ilic, V., Markovic, S., Soldatovic, I., Stefanovic, D., & Jaric, S. (2014). The relationship between hip, knee and ankle muscle mechanical characteristics and gait transition speed. Human Movement Science, 38, 47–57. PubMed ID: 25244181 doi:10.1016/j.humov.2014.08.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raynor, A.J., Yi, C.J., Abernethy, B., & Jong, Q.J. (2002). Are transitions in human gait determined by mechanical, kinetic or energetic factors? Human Movement Science, 21, 785–805. PubMed ID: 12620720 doi:10.1016/S0167-9457(02)00180-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley, P.O., Della Croce, U., & Kerrigan, D.C. (2001). Propulsive adaptation to changing gait speed. Journal of Biomechanics, 34(2), 197–202. PubMed ID: 11165283 doi:10.1016/S0021-9290(00)00174-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstein, A., Inbar, O., Berginsky, T., & Meckel, Y. (2005). Preferred transition speed between walking and running: Effects of training status. Medicine & Science in Sports & Exercise, 37, 1864–1870. PubMed ID: 16286854 doi:10.1249/01.mss.0000177217.12977.2f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouanet, H., & Lecoutre, B. (1983). Specific inference in ANOVA: From significance tests to Bayesian procedures. British Journal of Mathematical and Statistical Psychology, 36, 252–268. doi:10.1111/j.2044-8317.1983.tb01131.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seay, J.F., Haddad, J.M., van Emmerik, R.E.A., & Hamill, J. (2006). Coordination variability around the walk to run transition during human locomotion. Motor Control, 10(2), 178–196. PubMed ID: 16871012 doi:10.1123/mcj.10.2.178

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorstensson, A., & Roberthson, H. (1987). Adaptations to changing speed in human locomotion: Speed of transition between walking and running. Acta Physiologica Scandinavica, 131, 211–214. PubMed ID: 3673618 doi:10.1111/j.1748-1716.1987.tb08228.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turvey, M.T., Holt, K.G., Lafiandra, M.E., & Fonseca, S.T. (1999). Can the transitions to and from running and the metabolic cost of running be determined from the kinetic energy of running? Journal of Motor Behavior, 31(3), 265–278. PubMed ID: 11177636 doi:10.1080/00222899909600993

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziv, G., & Rotstein, A. (2009). Physiological characteristics of the preferred transition speed in racewalkers. Medicine & Science in Sports & Exercise, 41, 797–804. PubMed ID: 19276854 doi:10.1249/MSS.0b013e31818ff715

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 45 45 8
Full Text Views 7 7 0
PDF Downloads 2 2 0