Important Movement Concepts: Clinical Versus Neuroscience Perspectives

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

Human movement is complex, presenting clinical and research challenges regarding how it is described and investigated. This paper discusses the commonalities and differences on how human movement is conceptualized from neuroscientific and clinical perspectives with respect to postural control; the limitations of linear measures; movement efficiency with respect to metabolic energy cost and selectivity; and, how muscle synergy analysis may contribute to our understanding of movement variability. We highlight the role of sensory information on motor performance with respect to the base of support and alignment, illustrating a potential disconnect between the clinical and neuroscientific perspectives. The purpose of this paper is to discuss the commonalities and differences in how movement concepts are defined and operationalized by Bobath clinicians and the neuroscientific community to facilitate a common understanding and open the dialogue on the research practice gap.

Vaughan-Graham, Patterson, Zabjek, and Cott are with the Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada.

Address author correspondence to Julie Vaughan-Graham at julie.vaughan.graham@utoronto.ca.
Motor Control
Article Sections
References
  • AlonsoA.MochizukiL.Silva LunaN.AyamaS.CanonicaA. & GreveJ. (2015). Relation between the sensory and anthropometric variables in the quiet standing postural control: Is the inverted pendulum important for the static balance control? BioMed Research International 2015985312. PubMed ID: 26539550 doi:10.1155/2015/985312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AmadoA.PalmerC.HamillJ. & van EmmerikR. (2016). Coupling of postural and manual tasks in expert performers. Human Movement Science 46251260. PubMed ID: 26803676 doi:10.1016/j.humov.2015.12.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AndersonG.DeluigiF.BelliG.TentoniC. & GaetzM. (2016). Training for improved neuro-muscular control of balance in middle aged females. Journal of Bodywork and Movement Therapies 20(1) 1018. PubMed ID: 26891632 doi:10.1016/j.jbmt.2015.01.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AruinA.S. (2003). The effect of changes in the body configuration on anticipatory postural adjustments. Motor Control 7264277. PubMed ID: 12893957

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BernsteinN.A. (1967). The coordination and regulation of movements. Oxford, UK: Pergamon Press.

  • BeyaertC.VasaR. & FrykbergG. (2015). Gait post-stroke: Pathophysiology and rehabilitation strategies. Clinical Neurophysiology 45(4–5) 335355. PubMed ID: 26547547 doi:10.1016/j.neucli.2015.09.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BorichM.BrodieS.GrayW.IontaS. & BoydL. (2015). Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation. Neuropsychologia 79(Part B) 246255. doi:10.1016/j.neuropsychologia.2015.07.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BouissetS.RichardsonJ. & ZattaraM. (2000). Do anticipatory postural adjustments occurring in different segments of the postural chain follow the same organisational rule for different task movement velocities, independently of the inertial load value? Experimental Brain Research 1327986. PubMed ID: 10836638

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cano-de-la-CuerdaR.Molero-SánchezA.Carratalá-TejadaM.Alguacil-DiegoI.M.Molina-RuedaF.Miangolarra-PageJ.C. & TorricelliD. (2015). Theories and control models and motor learning: Clinical applications in neurorehabilitation. Neurología 30(1) 3241. doi:10.1016/j.nrleng.2011.12.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CappelliniG.IvanenkoY.PoppeleR. & LacquanitiF. (2006). Motor patterns in human walking and running. Journal of Neurophysiology 95(6) 34263437. PubMed ID: 16554517

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CaronniA. & CavallariP. (2009). Anticipatory postural adjustments stabilise the whole upper-limb prior to a gentle index finger tap. Experimental Brain Research 194(1) 5966. PubMed ID: 19082820 doi:10.1007/s00221-008-1668-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CarpenterM.G.MurnaghanC.D. & InglisJ.T. (2010). Shifting the balance: Evidence of an exploratory role for postural sway. Neuroscience 171(1) 196204. PubMed ID: 20800663 doi:10.1016/j.neuroscience.2010.08.030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChvatalS.A. & TingL.H. (2013). Common muscle synergies for balance and walking. Frontiers in Computational Neuroscience 748. PubMed ID: 23653605 doi:10.3389/fncom.2013.00048

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ClarkD.J.TingL.H.ZajacF.E.NeptuneR.R. & KautzS.A. (2010). Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. Journal of Neurophysiology 103(2) 844857. PubMed ID: 20007501

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CollinsS.H.WigginM.B. & SawickiG.S. (2015). Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 522(7555) 212215. PubMed ID: 25830889

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’AvellaA. & LacquanitiF. (2013). Control of reaching movements by muscle synergy combinations. Frontiers in Computational Neuroscience 742. doi:10.3389/fncom.2013.00042

    • Search Google Scholar
    • Export Citation
  • D’AvellaA.PortoneA.FernandezL. & LacquanitiF. (2006). Control of fast-reaching movements by muscle synergy combinations. The Journal of Neuroscience 26(30) 77917810. doi:10.1523/JNEUROSCI.0830-06.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de SouzaN.S.MartinsA.C.AlexandreD.J.OrsiniM.BastosV.H.LeiteM.A. . . . FilhoP.M. (2015). The influence of fear of falling on orthostatic postural control: A systematic review. Neurology International 7(3) 6265. doi:10.4081/ni.2015.6057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FeldmanA.G. (2011). Space and time in the context of equilibrium-point theory. Wiley Interdisciplinary Reviews: Cognitive Science 2(3) 287304. PubMed ID: 26302077 doi:10.1002/wcs.108

    • Search Google Scholar
    • Export Citation
  • FeldmanA.G.GoussevV.SangoleA. & LevinM.F. (2007). Threshold position control and the principle of minimal interaction in motor actions. In P. CisekT. Drew & J.F. Kalaska (Eds.) Progress in brain research (Vol. 165 pp. 267281). Elsevier.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • FeldmanA.G. & LevinM.F. (2009). The equilibrium-point hypothesis—Past, present and future. In D. Sternad (Ed.) Progress in motor control: A multidisciplinary perspective (pp. 699726). Boston, MA: Springer US.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GelfandI. & LatashM. (1998). On the problem of adequate language in motor control. Motor Control 2(4) 306313. PubMed ID: 9758883

  • GuccioneA. (1991). Physical therapy diagnosis and the relationship between impairments and function. Physical Therapy 71(7) 499503. PubMed ID: 1828899

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GuigonE.BaraducP. & DesmurgetM. (2008). Computational motor control: Feedback and accuracy. The European Journal of Neuroscience 27(4) 10031016. PubMed ID: 18279368 doi:10.1111/j.1460-9568.2008.06028.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HaddadJ.M.GagnonJ.L.HassonC.J.Van EmmerikR.E. & HamillJ. (2006). Evaluation of time-to-contact measures for assessing postural stability. Journal of Applied Biomechanics 22155161. PubMed ID: 16871006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HaddadJ.M.RyuJ.H.SeamanJ.M. & PontoK.C. (2010). Time-to-contact measures capture modulations in posture based on the precision demands of a manual task. Gait & Posture 32(4) 592596. PubMed ID: 20850326 doi:10.1016/j.gaitpost.2010.08.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HarbourneR.T. & StergiouN. (2009). Movement variability and the use of nonlinear tools: Principles to guide physical therapist practice. Physical Therapy 89(3) 267282. PubMed ID: 19168711

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HorakF.B. (2006). Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls. Age and Ageing 35(Suppl. 2) ii7ii11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IvanenkoY.PoppeleR. & LacquanitiF. (2004). Five basic muscle activation patterns account for muscle activity during human locomotion. The Journal of Physiology 556(Pt. 1) 267282. PubMed ID: 14724214 doi:10.1113/jphysiol.2003.057174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KavounoudiasA.RollJ.AntonJ.NazarianB.RothM. & RollR. (2008). Proprio-tactile integration for kinesthetic perception: An fMRI study. Neuropsychologia 46(2) 567575. PubMed ID: 18023825

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KavounoudiasA.RollR. & RollJ.-P. (2001). Foot sole and ankle muscle inputs contribute jointly to human erect posture regulation. The Journal of Physiology 532(3) 869878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KentM. (2006). The oxford dictionary of sports science and medicine (3rd ed.). Oxford University Press.

  • KistemakerD.A.WongJ.D. & GribbleP.L. (2010). The central nervous system does not minimize energy cost in arm movements. Journal of Neurophysiology 104(6) 29852994. PubMed ID: 20884757

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KlousM.MikulicP. & LatashM.L. (2011). Two aspects of feedforward postural control: Anticipatory postural adjustments and anticipatory synergy adjustments. Journal of Neurophysiology 105(5) 22752288. PubMed ID: 21389305

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KogamiH.AnQ.YangN.YamakawaH.TamuraY.YamashitaA. . . . MiyaiI. (2018). Effect of physical therapy on muscle synergy structure during standing-up motion of hemiplegic patients. IEEE Robotics and Automation Letters 3(3) 22292236. doi:10.1109/LRA.2018.2811050

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KollenB.LennonS.LyonsB.Wheatley-SmithL.ScheperM.BuurkeJ. . . . KwakkelG. (2009). The effectiveness of the Bobath concept in stroke rehabilitation: What is the evidence? Stroke 408997. PubMed ID: 19182079

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KouzakiM. & MasaniK. (2008). Reduced postural sway during quiet standing by light touch is due to finger tactile feedback but not mechanical support. Experimental Brain Research 188(1) 153158. PubMed ID: 18506433 doi:10.1007/s00221-008-1426-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KrishnanV.AruinA. & LatashM. (2011). Two stages and three components of the postural preparation to action. Experimental Brain Research 212(1) 4763. PubMed ID: 21537967 doi:10.1007/s00221-011-2694-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LacourJ.-R. & BourdinM. (2015). Factors affecting the energy cost of level running at submaximal speed. European Journal of Applied Physiology 115(4) 651673. PubMed ID: 25681108 doi:10.1007/s00421-015-3115-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LacquanitiF.IvanenkoY.P. & ZagoM. (2012). Patterned control of human locomotion. The Journal of Physiology 590(10) 21892199. PubMed ID: 22411012 doi:10.1113/jphysiol.2011.215137

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LatashM.L.ScholzJ.P. & SchönerG. (2007). Toward a new theory of motor synergies. Motor Control 11(3) 276308.

  • LatashM.L.LevinM.F.ScholzJ.P. & SchönerG. (2010). Motor control theories and their applications. Medicina 46(6) 382392.

  • LevinM.F.KleimJ.A. & WolfS.L. (2009). What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabilitation and Neural Repair 23313319. PubMed ID: 19118128

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LevinM.F.LiebermannD.G.ParmetY. & BermanS. (2016). Compensatory versus noncompensatory shoulder movements used for reaching in stroke. Neurorehabilitation and Neural Repair 30(7) 635646. doi:10.1177/1545968315613863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LevinM.F. & PanturinE. (2011). Sensorimotor integration for functional recovery and the Bobath approach. Motor Control 15(2) 285301. PubMed ID: 21628730

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LinS. & YangW. (2011). Effect of plantar desensitization on postural adjustments prior to step initiation. Gait & Posture 34(4) 451456. PubMed ID: 21795046 doi:10.1016/j.gaitpost.2011.06.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MalmströmE.-M.OlssonJ.BaldetorpJ. & FranssonP.-A. (2015). A slouched body posture decreases arm mobility and changes muscle recruitment in the neck and shoulder region. European Journal of Applied Physiology 115(12) 24912503. doi:10.1007/s00421-015-3257-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ManciniM.SalarianA.Carlson-KuhtaP.ZampieriC.KingL.ChiariL. & HorakF.B. (2012). ISway: A sensitive, valid and reliable measure of postural control. Journal of NeuroEngineering and Rehabilitation 959. PubMed ID: 22913719

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MansfieldA.DanellsC.J.InnessE.MochizukiG. & McIlroyW.E. (2011). Between-limb synchronization for control of standing balance in individuals with stroke. Clinical Biomechanics 26(3) 312317. PubMed ID: 21055854 doi:10.1016/j.clinbiomech.2010.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MassionJ.AlexandrovA. & FrolovA. (2004). Why and how are posture and movement coordinated? Progress in Brain Research 1431327. doi:10.1016/S0079-6123(03)43002-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreaP.EngJ. & HodgsonA. (2002). Biomechanics of reaching: Clinical implications for individuals with acquired brain injury. Disability and Rehabilitation 24(10) 534541. PubMed ID: 12171643

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGinnisP.Q.HackL.M.Nixon-CaveK. & MichlovitzS.L. (2009). Factors that influence the clinical decision making of physical therapists in choosing a balance assessment approach. Physical Therapy 89(3) 233247. PubMed ID: 19179463

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGlynnM. & CottC.A. (2007). Weighing the evidence: Clinical decision making in neurological physical therapy. Physiotherapy Canada 59(4) 241254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MichaelsenS.DannenbaumR. & LevinM. (2006). Task-specific training with trunk restraint on arm recovery in stroke: Randomized control trial. Stroke 37(1) 186192. PubMed ID: 16339469 doi:10.1161/01.STR.0000196940.20446.c9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MorassoP.CasadioM.MohanV.ReaF. & ZenzeriJ. (2015). Revisiting the body-schema concept in the context of whole-body postural-focal dynamics. Frontiers in Human Neuroscience 9(83) 116. doi:10.3389/fnhum.2015.00083

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MouchninoL.AurentyR.MassionJ. & PedottiA. (1992). Coordination between equilibrium and head-trunk orientation during leg movement: A new strategy built up by training. Journal of Neurophysiology 67(6) 15871598. PubMed ID: 1629766

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MuratoriL.M.LambergE.M.QuinnL. & DuffS.V. (2013). Applying principles of motor learning and control to upper extremity rehabilitation. Journal of Hand Therapy 26(2) 94103. PubMed ID: 23598082 doi:10.1016/j.jht.2012.12.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MurnaghanC.D.CarpenterM.G.ChuaR. & InglisJ.T. (2017). Keeping still doesn’t “make sense”: Examining a role for movement variability by stabilizing the arm during a postural control task. Journal of Neurophysiology 117(2) 846852. PubMed ID: 27927789 doi:10.1152/jn.01150.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MurnaghanC.D.HorslenB.C.InglisJ.T. & CarpenterM.G. (2011). Exploratory behavior during stance persists with visual feedback. Neuroscience 1955459. PubMed ID: 21867743 doi:10.1016/j.neuroscience.2011.08.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MurnaghanC.D.SquairJ.W.ChuaR.InglisJ.T. & CarpenterM.G. (2014). Cortical contributions to control of posture during unrestricted and restricted stance. Journal of Neurophysiology 111(9) 19201926. PubMed ID: 24523526 doi:10.1152/jn.00853.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ÖnellA. (2000). The vertical ground reaction force for analysis of balance? Gait & Posture 12(1) 713. PubMed ID: 10996292 doi:10.1016/S0966-6362(00)00053-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PainL.BakerR.RichardsonD. & AgurA. (2015). Effect of trunk-restraint training on function and compensatory trunk, shoulder and elbow patterns during post-stroke reach: A systematic review. Disability and Rehabilitation 37(7) 553562. PubMed ID: 24963941 doi:10.3109/09638288.2014.932450

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ParsonsS.MansfieldA.InnessE. & PattersonK. (2016). The relationship of plantar cutaneous sensation and standing balance post-stroke. Topics in Stroke Rehabilitation 23(5) 326332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PeifferJ.AbbissC.SultanaF.BernardT. & BrisswalterJ. (2016). Comparison of the influence of age on cycling efficiency and the energy cost of running in well-trained triathletes. European Journal of Applied Physiology 116(1) 195201. PubMed ID: 26392273 doi:10.1007/s00421-015-3264-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PiscitelliD.FalakiA.SolnikS. & LatashM. (2017). Anticipatory postural adjustments and anticipatory synergy adjustments: Preparing to a postural perturbation with predictable and unpredictable direction. Experimental Brain Research 235(3) 713730. PubMed ID: 27866261 doi:10.1007/s00221-016-4835-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PowellD. & WilliamsD. (2015). Athletes trained using stable compared to unstable surfaces exhibit distinct postural control profiles when assessed by traditional and nonlinear measures. Human Movement Science 447380. PubMed ID: 26319359 doi:10.1016/j.humov.2015.08.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SackettD.RosenburgW.GrayJ.M.HaynesR. & RichardsonW. (1996). Evidence based medicine: What is it and what it isn’t. British Medical Journal 312(7023) 7173. PubMed ID: 8555924

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SafavyniaS.A.Torres-OviedoG. & TingL.H. (2011). Muscle synergies: Implications for clinical evaluation and rehabilitation of movement. Topics in Spinal Cord Injury Rehabilitation 17(1) 1624. PubMed ID: 21796239 doi:10.1310/sci1701-16

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SainburgR.L. (2015). Should the Equilibrium Point Hypothesis (EPH) be considered a scientific theory? Motor Control 19(2) 142148. PubMed ID: 25386681 doi:10.1123/mc.2014-0056

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SantosM.J.KanekarN. & AruinA.S. (2010a). The role of anticipatory postural adjustments in compensatory control of posture: 1. Electromyographic analysis. Journal of Electromyography and Kinesiology 20(3) 388397. doi:10.1016/j.jelekin.2009.06.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SantosM.J.KanekarN. & AruinA.S. (2010b). The role of anticipatory postural adjustments in compensatory control of posture: 2. Biomechanical analysis. Journal of Electromyography and Kinesiology 20(3) 398405. doi:10.1016/j.jelekin.2010.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ScariotV.RiosJ.ClaudinoR.dos SantosE.AngulskiH. & dos SantosM. (2016). Both anticipatory and compensatory postural adjustments are adapted while catching a ball in unstable standing posture. Journal of Bodywork and Movement Therapies 20(1) 9097. PubMed ID: 26891642 doi:10.1016/j.jbmt.2015.06.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchaalS.MohajerianP. & IjspeertA. (2007). Dynamics systems vs. optimal control—A unifying view. In P. CisekT. Drew & J.F. Kalaska (Eds.) Progress in brain research (Vol. 165 pp. 425445). Elsevier.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shumway-CookA. & WoollacottM. (2012). Motor control: Translating research into clinical practice (4th ed.). Baltimore, MD: Lippincott Williams & Wilkins.

    • Search Google Scholar
    • Export Citation
  • Shumway-CookA. & WoollacottM. (2016). Motor control: Translating research into clinical practice (5th ed.). Baltimore, MD: Lippincott Williams & Wilkins.

    • Search Google Scholar
    • Export Citation
  • SlijperH.LatashM.RaoN. & AruinA. (2002). Task-specific modulation of anticipatory postural adjustments in individuals with hemiparesis. Clinical Neurophysiology 113642655. PubMed ID: 11976044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SparrowW. & Irizarry-LopezV. (1987). Mechanical efficiency and metabolic cost as measures of learning a novel gross motor task. Journal of Motor Behavior 19(2) 240264. PubMed ID: 14988061 doi:10.1080/00222895.1987.10735410

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SutherlandD. (2005). The evolution of clinical gait analysis part III—Kinetics and energy assessment. Gait & Posture 21(4) 447461. doi:10.1016/j.gaitpost.2004.07.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TingL.H. & McKayJ.L. (2007). Neuromechanics of muscle synergies for posture and movement. Current Opinion in Neurobiology 17622628. PubMed ID: 18304801

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TomitaH.FukayaY.UedaT.HonmaS.YamashitaE.YamamotoY. . . . ShionoyaK. (2011). Deficits in task-specific modulation of anticipatory postural adjustments in individuals with spastic diplegic cerebral palsy. Journal of Neurophysiology 105(5) 21572168. PubMed ID: 21346212

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres-OviedoG. & TingL.H. (2007). Muscle synergies characterizing human postural responses. Journal of Neurophysiology 9821442156. PubMed ID: 17652413

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan-GrahamJ. & CottC. (2016). Defining a Bobath clinical framework—A modified e-Delphi study. Physiotherapy Theory and Practice 32(8) 612627. PubMed ID: 27710163 doi:10.1080/09593985.2016.1228722

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan-GrahamJ. & CottC. (2017). Phronesis: Practical wisdom the role of professional practice knowledge in the clinical reasoning of Bobath instructors. Journal of Evaluation in Clinical Practice 23(5) 935948. PubMed ID: 27723216 doi:10.1111/jep.12641

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan-GrahamJ.CottC. & WrightF.V. (2015a). The Bobath (NDT) concept in adult neurological rehabilitation: What is the state of the knowledge? A scoping review. Part I: Conceptual perspectives. Disability and Rehabilitation 37(20) 17931807. doi:10.3109/09638288.2014.985802

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan-GrahamJ.CottC. & WrightF.V. (2015b). The Bobath (NDT) concept in adult neurological rehabilitation: What is the state of the knowledge? A scoping review. Part II: Intervention studies perspectives. Disability and Rehabilitation 37(21) 19091928. doi:10.3109/09638288.2014.987880

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan-GrahamJ.PattersonK.ZabjekK. & CottC. (2017). Conceptualizing movement by expert Bobath instructors in neurological rehabilitation. Journal of Evaluation in Clinical Practice 23(6) 11531163. PubMed ID: 28425221 doi:10.1111/jep.12742

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VGrahamJ.EustaceC.BrockK.SwainE. & Irwin-CarruthersS. (2009). The Bobath concept in contemporary clinical practice. Topics in Stroke Rehabilitation 16(1) 5768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VoudourisD.RadhakrishnanS.HatzitakiV. & BrennerE. (2013). Does postural stability affect grasping? Gait & Posture 38(3) 477482. PubMed ID: 23403151 doi:10.1016/j.gaitpost.2013.01.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wikstrom-GrotellC. & ErikssonK. (2012). Movement as a basic concept in physiotherapy—A human science approach. Physiotherapy Theory and Practice 28(6) 428438. PubMed ID: 22765213 doi:10.3109/09593985.2012.692582

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WinsteinC.J.SteinJ.ArenaR.BatesB.CherneyL.R.CramerS.C. . . . Council on Quality of Care and Outcomes Research. (2016). Guidelines for adult stroke rehabilitation and recovery: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 47(6) e98e169. PubMed ID: 27145936

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WuG. & MacLeodM. (2001). The control of body orientation and center of mass location under asymmetrical loading. Gait & Posture 13(2) 95101. PubMed ID: 11240357 doi:10.1016/S0966-6362(00)00102-8

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 361 361 88
Full Text Views 11 11 1
PDF Downloads 6 6 0
Altmetric Badge
PubMed
Google Scholar