Effects of Voluntary Agonist–Antagonist Coactivation on Stability of Vertical Posture

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

We explored the effects of voluntary coactivation of agonist–antagonist leg and trunk muscles on stability of vertical posture. Young healthy subjects performed several tasks while standing with no additional muscle coactivation, low coactivation, and high coactivation. Postural stability was estimated using indices of postural sway and of intertrial variance in the space of muscle groups with parallel scaling of activation levels (M-modes). An increase in coactivation led to a significant increase in the postural sway speed reflected in faster rambling and trembling trajectories. Coactivation also led to a relative drop in the variance component that had no effects on the center of pressure coordinate and an increase in the component that shifted the center of pressure. We conclude that additional muscle coactivation does not help to stabilize vertical posture and is more likely to lead to postural destabilization. The results are consistent with an earlier hypothesis on muscle coactivation ensuring abundance (excessive degrees of freedom) at the level of control variables.

Yamagata, Falaki, and Latash are with the Dept. of Kinesiology, The Pennsylvania State University, University Park, PA. Yamagata is also with the Dept. of Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Address author correspondence to Mark L. Latash at mll11@psu.edu.
Motor Control
Article Sections
References
  • AmbikeS.MattosD.ZatsiorskyV.M. & LatashM.L. (2016). Synergies in the space of control variables within the equilibrium-point hypothesis. Neuroscience 315150161. PubMed ID: 26701299 doi:10.1016/j.neuroscience.2015.12.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AmbikeS.MattosD.ZatsiorskyV.M. & LatashM.L. (2018). Systematic, unintended drifts in the cyclic force produced with the fingertips. Motor Control 228299. PubMed ID: 28338400 doi:10.1123/mc.2016-0082

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AnderssonG.HagmanJ.TalianzadehR.SvedbergA. & LarsenH.C. (2002). Effect of cognitive load on postural control. Brain Research Bulletin 58135139. PubMed ID: 12121823 doi:10.1016/S0361-9230(02)00770-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AriasP.EspinosaN.Robles-GarcíaV.CaoR. & CudeiroJ. (2012). Antagonist muscle co-activation during straight walking and its relation to kinematics: Insight from young, elderly and Parkinson’s disease. Brain Research 1455124131. PubMed ID: 22502978 doi:10.1016/j.brainres.2012.03.033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BergaminM.GobboS.ZanottoT.SieverdesJ.C.AlbertonC.L.ZaccariaM. & ErmolaoA. (2014). Influence of age on postural sway during different dual-task conditions. Frontiers in Aging Neuroscience 6271. PubMed ID: 25374539 doi:10.3389/fnagi.2014.00271

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BłaszczykJ.W. (2016). The use of force-plate posturography in the assessment of postural instability. Gait & Posture 4416. doi:10.1016/j.gaitpost.2015.10.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BonnetC.CarelloC. & TurveyM.T. (2009). Diabetes and postural stability: Review and hypotheses. Journal of Motor Behavior 41172190. PubMed ID: 19201687 doi:10.3200/JMBR.41.2.172-192

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BourbonnaisD.KriegerC. & SmithA.M. (1986). Cerebellar cortical activity during stretch of antagonist muscles. Canadian Journal of Physiology and Pharmacology 6412021213. PubMed ID: 3779517 doi:10.1139/y86-204

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrookhamR.L.MiddlebrookE.E.GrewalT.J. & DickersonC.R. (2011). The utility of an empirically derived co-activation ratio for muscle force prediction through optimization. Journal of Biomechanics 4415821587. PubMed ID: 21420090 doi:10.1016/j.jbiomech.2011.02.077

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CameronM.H. & LordS. (2010). Postural control in multiple sclerosis: Implications for fall prevention. Current Neurology and Neuroscience Reports 10(5) 407412. PubMed ID: 20567946 doi:10.1007/s11910-010-0128-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChvatalS.A. & TingL.H. (2013). Common muscle synergies for balance and walking. Frontiers in Computational Neuroscience 748. PubMed ID: 23653605 doi:10.3389/fncom.2013.00048

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CorcosD.M.GottliebG.L.LatashM.L.AlmeidaG.L. & AgarwalG.C. (1992). Electromechanical delay: An experimental artifact. Journal of Electromyography and Kinesiology 25968. PubMed ID: 20719599 doi:10.1016/1050-6411(92)90017-D

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danna-Dos-SantosA.DeganiA.M. & LatashM.L. (2008). Flexible muscle modes and synergies in challenging whole-body tasks. Experimental Brain Research 189171187. PubMed ID: 18521583 doi:10.1007/s00221-008-1413-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danna-Dos-SantosA.SlomkaK.ZatsiorskyV.M. & LatashM.L. (2007). Muscle modes and synergies during voluntary body sway. Experimental Brain Research 179533550. PubMed ID: 17221222 doi:10.1007/s00221-006-0812-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • d’AvellaA.SaltielP. & BizziE. (2003). Combinations of muscle synergies in the construction of a natural motor behavior. Nature Neuroscience 6300308. doi:10.1038/nn1010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EbnerT.J.BloedelJ.R.VitekJ.L. & SchwartzA.B. (1982). The effects of cerebellar stimulation on the stretch reflex in the spastic monkey. Brain 105425442. PubMed ID: 6980686 doi:10.1093/brain/105.3.425

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FalakiA.HuangX.LewisM.M. & LatashM.L. (2016). Impaired synergic control of posture in Parkinson’s patients without postural instability. Gait & Posture 44209215. PubMed ID: 27004660 doi:10.1016/j.gaitpost.2015.12.035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FalakiA.HuangX.LewisM.M. & LatashM.L. (2017). Motor equivalence and structure of variance: Multi-muscle postural synergies in Parkinson’s disease. Experimental Brain Research 23522432258. PubMed ID: 28455740 doi:10.1007/s00221-017-4971-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FeldmanA.G. (1966). Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biophysics 11565578.

    • Search Google Scholar
    • Export Citation
  • FeldmanA.G. (1986). Once more on the equilibrium-point hypothesis (λ-model) for motor control. Journal of Motor Behavior 181754. PubMed ID: 15136283 doi:10.1080/00222895.1986.10735369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FeldmanA.G. (2015). Referent control of action and perception: Challenging conventional theories in behavioral science. New York, NY: Springer.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FrysingerR.C.BourbonnaisD.KalaskaJ.F. & SmithA.M. (1984). Cerebellar cortical activity during antagonist cocontraction and reciprocal inhibition of forearm muscles. Journal of Neurophysiology 513249. PubMed ID: 6693934 doi:10.1152/jn.1984.51.1.32

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GelfandI.M. & LatashM.L. (1998). On the problem of adequate language in movement science. Motor Control 2306313. PubMed ID: 9758883 doi:10.1123/mcj.2.4.306

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GomesM.M. & BarelaJ.A. (2007). Postural control in down syndrome: The use of somatosensory and visual information to attenuate body sway. Motor Control 11224234. PubMed ID: 17715457 doi:10.1123/mcj.11.3.224

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HammondM.C.FittsS.S.KraftG.H.NutterP.B.TrotterM.J. & RobinsonL.M. (1988). Co-contraction in the hemiparetic forearm: Quantitative EMG evaluation. Archives of Physical Medicine and Rehabilitation 69348351. PubMed ID: 3365115

    • Search Google Scholar
    • Export Citation
  • HarrisC.M. & WolpertD.M. (1998). Signal-dependent noise determines motor planning. Nature 394(6695) 780784. PubMed ID: 9723616 doi:10.1038/29528

  • HasanZ. (1986). Optimized movement trajectories and joint stiffness in unperturbed, inertially loaded movements. Biological Cybernetics 53373382. PubMed ID: 3697407 doi:10.1007/BF00318203

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HeitmannS.FernsN. & BreakspearM. (2012). Muscle co-contraction modulates damping and joint stability in a three-link biomechanical limb. Frontiers in Neurorobotics 55. PubMed ID: 22275897 doi:10.3389/fnbot.2011.00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HiraiH.MiyazakiF.NaritomiH.KobaK.OkuT.UnoK. . . . KrebsH.I. (2015). On the origin of muscle synergies: Invariant balance in the co-activation of agonist and antagonist muscle pairs. Frontiers in Bioengineering and Biotechnology 3192. PubMed ID: 26636079 doi:10.3389/fbioe.2015.00192

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HirokawaS.SolomonowMLuoZ.LuY. & D’AmbrosiaR. (1991). Muscular co-contraction and control of knee stability. Journal of Electromyography and Kinesiology 1199208. PubMed ID: 20870510 doi:10.1016/1050-6411(91)90035-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HorakF.B.NuttJ.G. & NashnerL.M. (1992). Postural inflexibility in parkinsonian subjects. Journal of the Neurological Sciences 1114658. doi:10.1016/0022-510X(92)90111-W

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HumphreyD.R. (1982). Separate cell systems in the motor cortex of the monkey for the control of joint movement and of joint stiffness. Electroencephalography and Clinical Neurophysiology 36393408.

    • Search Google Scholar
    • Export Citation
  • HumphreyD.R. & ReedD.J. (1983). Separate cortical systems for control of joint movement and joint stiffness: Reciprocal activation and coactivation of antagonist muscles. Advances in Neurology 39347372. PubMed ID: 6419553

    • Search Google Scholar
    • Export Citation
  • IvanenkoY.P.PoppeleR.E. & LacquanitiF. (2004). Five basic muscle activation patterns account for muscle activity during human locomotion. Journal of Physiology 556267282. PubMed ID: 14724214 doi:10.1113/jphysiol.2003.057174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JoS. & MassaquoiS.G. (2004). A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance. Biological Cybernetics 91188202. PubMed ID: 15372241 doi:10.1007/s00422-004-0497-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JonesS.L.HenryS.M.RaaschC.C.HittJ.R. & BunnJ.Y. (2012). Individuals with non-specific low back pain use a trunk stiffening strategy to maintain upright posture. Journal of Electromyography and Kinesiology 221320. PubMed ID: 22100719 doi:10.1016/j.jelekin.2011.10.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KitataniR.OhataK.SakumaK.AgaY.YamakamiN.HashiguchiY. & YamadaS. (2016). Ankle muscle coactivation during gait is decreased immediately after anterior weight shift practice in adults after stroke. Gait & Posture 453540. PubMed ID: 26979880 doi:10.1016/j.gaitpost.2016.01.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KlousM.MikulicP. & LatashM.L. (2011). Two aspects of feed-forward postural control: Anticipatory postural adjustments and anticipatory synergy adjustments. Journal of Neurophysiology 10522752288. PubMed ID: 21389305 doi:10.1152/jn.00665.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KrishnamoorthyV.GoodmanS.R.LatashM.L. & ZatsiorskyV.M. (2003). Muscle synergies during shifts of the center of pressure by standing persons: Identification of muscle modes. Biological Cybernetics 89152161. doi:10.1007/s00422-003-0419-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KrishnamoorthyV.LatashM.L.ScholzJ.P. & ZatsiorskyV.M. (2003). Muscle synergies during shifts of the center of pressure by standing persons. Experimental Brain Research 152281292. doi:10.1007/s00221-003-1574-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KrishnanV.AruinA.S. & LatashM.L. (2011). Two stages and three components of postural preparation to action. Experimental Brain Research 2124763. PubMed ID: 21537967 doi:10.1007/s00221-011-2694-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LatashM.L. (2010). Motor synergies and the equilibrium-point hypothesis. Motor Control 14294322. PubMed ID: 20702893 doi:10.1123/mcj.14.3.294

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LatashM.L. (2012). The bliss (not the problem) of motor abundance (not redundancy). Experimental Brain Research 21715. PubMed ID: 22246105 doi:10.1007/s00221-012-3000-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LatashM.L. (2017). Biological movement and laws of physics. Motor Control 21327344. PubMed ID: 27633077 doi:10.1123/mc.2016-0016

  • LatashM.L. (2018). Muscle co-activation: Definitions, mechanisms, and functions. Journal of Neurophysiology 12088104. PubMed ID: 29589812 doi:10.1152/jn.00084.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LatashM.L. & HuangX. (2015). Neural control of movement stability: Lessons from studies of neurological patients. Neuroscience 3013948. PubMed ID: 26047732 doi:10.1016/j.neuroscience.2015.05.075

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LatashM.L.ScholzJ.P. & SchonerG. (2007). Toward a new theory of motor synergies. Motor Control 11276308. PubMed ID: 17715460 doi:10.1123/mcj.11.3.276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LatashM.L.ShimJ.K.SmilgaA.V. & ZatsiorskyV.M. (2005). A central back-coupling hypothesis on the organization of motor synergies: A physical metaphor and a neural model. Biological Cybernetics 92186191. PubMed ID: 15739110 doi:10.1007/s00422-005-0548-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LatashM.L. & ZatsiorskyV.M. (1993). Joint stiffness: Myth or reality? Human Movement Science 12653692. doi:10.1016/0167-9457(93)90010-M

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeeP.J.RogersE.L. & GranataK.P. (2006). Active trunk stiffness increases with co-contraction. Journal of Electromyography and Kinesiology 165157. PubMed ID: 16099678 doi:10.1016/j.jelekin.2005.06.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MariS.SerraoM.CasaliC.ConteC.MartinoG.RanavoloA. . . . PierelliF. (2014). Lower limb antagonist muscle co-activation and its relationship with gait parameters in cerebellar ataxia. Cerebellum 13226236. PubMed ID: 24170572 doi:10.1007/s12311-013-0533-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MartinV.ScholzJ.P. & SchönerG. (2009). Redundancy, self-motion, and motor control. Neural Computation 2113711414. PubMed ID: 19718817 doi:10.1162/neco.2008.01-08-698

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MilnerT.E. & CloutierC. (1993). Compensation for mechanically unstable loading in voluntary wrist movement. Experimental Brain Research 94522532. PubMed ID: 8359266 doi:10.1007/BF00230210

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MinkJ.W. & ThachW.T. (1991). Basal ganglia motor control. III. Pallidal ablation: Normal reaction time, muscle cocontraction, and slow movement. Journal of Neurophysiology 65330351. PubMed ID: 2016644 doi:10.1152/jn.1991.65.2.330

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MochizukiL.DuarteM.AmadioA.C.ZatsiorskyV.M. & LatashM.L. (2006). Changes in postural sway and its fractions in conditions of postural instability. Journal of Applied Biomechanics 225160. PubMed ID: 16760567 doi:10.1123/jab.22.1.51

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NardoneA. & SchieppatiM. (2010). The role of instrumental assessment of balance in clinical decision making. European Journal of Physical and Rehabilitation Medicine 46221237.

    • Search Google Scholar
    • Export Citation
  • NielsenJ.B. (2016). Human spinal motor control. Annual Reviews in Neuroscience 3981101. doi:10.1146/annurev-neuro-070815-013913

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NielsenJ.B. & KagamiharaY. (1992). The regulation of disynaptic reciprocal Ia inhibition during co-contraction of antagonistic muscles in man. Journal of Physiology 456373391. PubMed ID: 1338100 doi:10.1113/jphysiol.1992.sp019341

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NielsenJ.B. & Pierrot-DeseillignyE. (1996). Evidence of facilitation of soleus-coupled Renshaw cells during voluntary co-contraction of antagonistic ankle muscles in man. Journal of Physiology 493603611. PubMed ID: 8782120 doi:10.1113/jphysiol.1996.sp021407

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PellecchiaG.L. (2003). Postural sway increases with attentional demands of concurrent cognitive task. Gait & Posture 182934. PubMed ID: 12855298 doi:10.1016/S0966-6362(02)00138-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RedfernM.S.YardleyL. & BronsteinA.M. (2001). Visual influences on balance. Journal of Anxiety Disorders 158194. PubMed ID: 11388359 doi:10.1016/S0887-6185(00)00043-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ReschechtkoS. & LatashM.L. (2017). Stability of hand force production: I. Hand level control variables and multi-finger synergies. Journal of Neurophysiology 11831523164. PubMed ID: 28904102 doi:10.1152/jn.00485.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RocchiL.ChiariL. & HorakF.B. (2002). Effects of deep brain stimulation and levodopa on postural sway in Parkinson’s disease. Journal of Neurology Neurosurgery and Psychiatry 73267274. PubMed ID: 12185157 doi:10.1136/jnnp.73.3.267

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SarabonN.PanjanA. & LatashM.L. (2013). The effects of aging on the rambling and trembling components of postural sway: Effects of motor and sensory challenges. Gait & Posture 38637642. PubMed ID: 23454042 doi:10.1016/j.gaitpost.2013.02.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ScholzJ.P. & SchönerG. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research 126289306. PubMed ID: 10382616 doi:10.1007/s002210050738

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SimeonovP.HsiaoH. & HendricksS. (2009). Effectiveness of vertical visual reference for reducing postural instability on inclined and compliant surfaces at elevation. Applied Ergonomics 40353361. PubMed ID: 19100527 doi:10.1016/j.apergo.2008.11.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SmithA.M. (1981). The coactivation of antagonist muscles. Canadian Journal of Physiology and Pharmacology 59733747. PubMed ID: 7032676 doi:10.1139/y81-110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StrangA.J.HaworthJ.HieronymusM.WalshM. & SmartL.J.Jr. (2011). Structural changes in postural sway lend insight into effects of balance training, vision, and support surface on postural control in a healthy population. European Journal of Applied Physiology 11114851495. PubMed ID: 21165641 doi:10.1007/s00421-010-1770-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TilneyF. & PikeF.H. (1925). Muscular coordination experimentally studied in its relation to the cerebellum. Archives of Neurology & Psychiatry 13289334. doi:10.1001/archneurpsyc.1925.02200090003001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TingL.H. & MacphersonJ.M. (2005). A limited set of muscle synergies for force control during a postural task. Journal of Neurophysiology 93609613. PubMed ID: 15342720 doi:10.1152/jn.00681.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TreschM.C.CheungV.C. & d’AvellaA. (2006). Matrix factorization algorithms for the identification of muscle synergies: Evaluation on simulated and experimental data sets. Journal of Neurophysiology 9521992212. PubMed ID: 16394079 doi:10.1152/jn.00222.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valero-CuevasF.J.VenkadesanM. & TodorovE. (2009). Structured variability of muscle activations supports the minimal intervention principle of motor control. Journal of Neurophysiology 1025968. PubMed ID: 19369362 doi:10.1152/jn.90324.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WettsR.KalaskaJ.F. & SmithA.M. (1985). Cerebellar nuclear cell activity during antagonist cocontraction and reciprocal inhibition of forearm muscles. Journal of Neurophysiology 54231244. PubMed ID: 3928831 doi:10.1152/jn.1985.54.2.231

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WhippleR.WolfsonL.DerbyC.SinghD. & TobinJ. (1993). Altered sensory function and balance in older persons. Journal of Gerontology 487176. PubMed ID: 8409244 doi:10.1093/geronj/48.Special_Issue.71

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WickensJ.R.AlexanderM.E. & MillerR. (1991). Two dynamic modes of striatal function under dopaminergic-cholinergic control: Simulation and analysis of a model. Synapse 8112. PubMed ID: 1871678 doi:10.1002/syn.890080102

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WinterD.A.PrinceF.FrankJ.S.PowellC. & ZabjekK.F. (1996). Unified theory regarding A/P and M/L balance in quiet stance. Journal of Neurophysiology 7523342343. PubMed ID: 8793746 doi:10.1152/jn.1996.75.6.2334

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WollesenB.Voelcker-RehageC.RegenbrechtT. & MattesK. (2016). Influence of a visual-verbal Stroop test on standing and walking performance of older adults. Neuroscience 318166177. PubMed ID: 26808774 doi:10.1016/j.neuroscience.2016.01.031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • YamagataM.FalakiA. & LatashM.L. (2018). Stability of vertical posture explored with unexpected mechanical perturbations: Synergy indices and motor equivalence. Experimental Brain Research 236(5) 15011517. PubMed ID: 29564504 doi:10.1007/s00221-018-5239-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZatsiorskyV.M. & DuarteM. (1999). Instant equilibrium point and its migration in standing tasks: Rambling and trembling components of the stabilogram. Motor Control 3(1) 2838. PubMed ID: 9924099 doi:10.1123/mcj.3.1.28

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZatsiorskyV.M. & DuarteM. (2000). Rambling and trembling in quiet standing. Motor Control 4185200. PubMed ID: 11500575 doi:10.1123/mcj.4.2.185

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 85 85 48
Full Text Views 6 6 1
PDF Downloads 3 3 1
Altmetric Badge
PubMed
Google Scholar