Challenging Standing Balance Reduces the Asymmetry of Motor Control of Postural Sway Poststroke

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

Background: Ankle plantarflexor muscle impairment contributes to asymmetrical postural control poststroke. Objective: This study examines the relationship of plantarflexor electromyography (EMG) with anterior–posterior center of pressure (APCOP) in people poststroke during progressive challenges to standing balance. Methods: Ten people poststroke and 10 controls participated in this study. Anteriorly directed loads of 1% body mass (BM) were applied to the pelvis every 25–40 s until 5%BM was reached. Cross-correlation values between plantarflexor EMG and APCOP (EMG:APCOP) position and velocity were compared. Results: EMG:APCOP velocity correlations were stronger than EMG:APCOP position across all muscles (p < .01), and correlations were predominately stronger in the nonparetic compared with the paretic leg (p < .05). Increasing challenge to standing balance reduced asymmetry of EMG:APCOP relationships. Conclusions: These data suggest that sensory information reflected in APCOP velocity interacts more strongly with plantarflexor activity in people poststroke and controls than APCOP position. Furthermore, increasing challenge to standing balance reduces postural control asymmetry between legs poststroke.

Pollock, Hunt, Gallina, Ivanova, and Garland are with the Dept. of Physical Therapy, University of British Columbia, Vancouver, BC, Canada. Vieira and Gallina are with Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Turin, Italy. Vieira is also with Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil. Ivanova, and Garland are with the Faculty of Health Sciences, Western University, London, Ontario, Canada.

Address author correspondence to S. Jayne Garland at jgarland@uwo.ca.
Motor Control
Article Sections
References
  • CarpenterM.G.FrankJ.S.SilcherC.P. & PeysarG.W. (2001). The influence of postural threat on the control of upright stance. Experimental Brain Research 138210218. PubMed ID: 11417462 doi:10.1007/s002210100681

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CarpenterM.G.MurnaghanC.D. & InglisJ.T. (2010). Shifting the balance: Evidence of an exploratory role for postural sway. Neuroscience 171196204. PubMed ID: 20800663 doi:10.1016/j.neuroscience.2010.08.030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de HaartM.GeurtsA.C.HuidekoperS.C.FasottiL. & van LimbeekJ. (2004). Recovery of standing balance in postacute stroke patients: A rehabilitation cohort study. Archives of Physical Medicine and Rehabilitation 85886895. PubMed ID: 15179641 doi:10.1016/j.apmr.2003.05.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DicksteinR. & AbulaffioN. (2000). Postural sway of the affected and nonaffected pelvis and leg in stance of hemiparetic patients. Archives of Physical Medicine and Rehabilitation 81364367. PubMed ID: 10724084 doi:10.1016/S0003-9993(00)90085-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di GiulioI.MaganarisC.N.BaltzopoulosV. & LoramI.D. (2009). The proprioceptive and agonist roles of gastrocnemius, soleus and tibialis anterior muscles in maintaining human upright posture. The Journal of Physiology 58723992416. PubMed ID: 19289550 doi:10.1113/jphysiol.2009.168690

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FimlandM.S.MoenP.M.HillT.GjellesvikT.I.TorhaugT.HelgerudJ. & HoffJ. (2011). Neuromuscular performance of paretic versus non-paretic plantar flexors after stroke. European Journal of Applied Physiology 11130413049. PubMed ID: 21455614 doi:10.1007/s00421-011-1934-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GarlandS.J.GrayV.L. & KnorrS. (2009). Muscle activation patterns and postural control following stroke. Motor Control 13387411. PubMed ID: 20014647 doi:10.1123/mcj.13.4.387

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GarlandS.J.PollockC.L. & IvanovaT.D. (2014). Could motor unit control strategies be partially preserved after stroke? Frontiers in Human Neuroscience 8864. PubMed ID: 25400568 doi:10.3389/fnhum.2014.00864

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GatevP.ThomasS.KeppleT. & HallettM. (1999). Feedforward ankle strategy of balance during quiet stance in adults. The Journal of Physiology 514 (Pt 3) 915928. doi:10.1111/j.1469-7793.1999.915ad.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GeurtsA.C.de HaartM.van NesI.J. & DuysensJ. (2005). A review of standing balance recovery from stroke. Gait & Posture 22267281. PubMed ID: 16214666 doi:10.1016/j.gaitpost.2004.10.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GowlandC.StratfordP.WardM.MorelandJ.TorresinW.Van HullenaarS. . . . PlewsN. (1993). Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment. Stroke 245863. PubMed ID: 8418551 doi:10.1161/01.STR.24.1.58

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GowlandC.VanHullenaarS.TorresinW. . . . Barclay-GoddardR. (1995). Chedoke-McMaster stroke assessment: Development validation and administration manual (1st ed.). Hamilton, Ontario: Chedoke-McMaster Hospitals and McMaster University.

    • Search Google Scholar
    • Export Citation
  • HochermanS.DicksteinR.HirschbieneA. & PillarT. (1988). Postural responses of normal geriatric and hemiplegic patients to a continuing perturbation. Experimental Neurology 99388402. PubMed ID: 3338530 doi:10.1016/0014-4886(88)90156-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HorakF.B. & NashnerL.M. (1986). Central programming of postural movements: Adaptation to altered support-surface configurations. Journal of Neurophysiology 5513691381. PubMed ID: 3734861 doi:10.1152/jn.1986.55.6.1369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HoweJ.A.InnessE.L.VenturiniA.WilliamsJ.I. & VerrierM.C. (2006). The Community Balance and Mobility Scale—a balance measure for individuals with traumatic brain injury. Clinical Rehabilitation 20885895. PubMed ID: 17008340 doi:10.1177/0269215506072183

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JohnsonM.A.PolgarJ.WeightmanD. & AppletonD. (1973). Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. Journal of the Neurological Sciences 18111129. PubMed ID: 4120482 doi:10.1016/0022-510X(73)90023-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KnorrS.BrouwerB. & GarlandS.J. (2010). Validity of the Community Balance and Mobility Scale in community-dwelling persons after stroke. Archives of Physical Medicine and Rehabilitation 91890896. PubMed ID: 20510980 doi:10.1016/j.apmr.2010.02.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LinK.C.WuC.Y.ChenC.L.ChernJ.S. & HongW.H. (2007). Effects of object use on reaching and postural balance: A comparison of patients with unilateral stroke and healthy controls. American Journal of Physical Medicine and Rehabilitation 86791799. PubMed ID: 17885311 doi:10.1097/PHM.0b013e318151fb81

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LoramI.D.GolleeH.LakieM. & GawthropP.J. (2011). Human control of an inverted pendulum: Is continuous control necessary? Is intermittent control effective? Is intermittent control physiological? The Journal of Physiology 589307324. PubMed ID: 21098004 doi:10.1113/jphysiol.2010.194712

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LukacsM.VecseiL. & BeniczkyS. (2008). Large motor units are selectively affected following a stroke. Clinical Neurophysiology 11925552558. PubMed ID: 18809353 doi:10.1016/j.clinph.2008.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MarigoldD.S.EngJ.J. (2006). The relationship of asymmetric weight-bearing with postural sway and visual reliance in stroke. Gait & Posture 23249255. PubMed ID: 16399522 doi:10.1016/j.gaitpost.2005.03.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MasaniK.PopovicM.R.NakazawaK.KouzakiM. & NozakiD. (2003). Importance of body sway velocity information in controlling ankle extensor activities during quiet stance. Journal of Neurophysiology 9037743782. PubMed ID: 12944529 doi:10.1152/jn.00730.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MasaniK.VetteA.H.AbeM.O.NakazawaK. & PopovicM.R. (2011). Smaller sway size during quiet standing is associated with longer preceding time of motor command to body sway. Gait & Posture 331417. PubMed ID: 21071228 doi:10.1016/j.gaitpost.2010.08.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCombeW.S. & PrettymanM.G. (2012). Arm training in standing also improves postural control in participants with chronic stroke. Gait & Posture 36419424. doi:10.1016/j.gaitpost.2012.03.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PollockC.L.IvanovaT.D.HuntM.A. & GarlandS.J. (2014). Motor unit recruitment and firing rate in medial gastrocnemius muscles during external perturbations in standing in humans. Journal of Neurophysiology 11216781684. PubMed ID: 24990568 doi:10.1152/jn.00063.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PortelaF.M.RodriguesE.C. & de Sá FerreiraA. (2014). A critical review of position- and velocity-based concepts of postural control during upright stance. Human Movement 15227233. doi:10.1515/humo-2015-0016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RamsayJ.W.BarranceP.J.BuchananT.S. & HigginsonJ.S. (2011). Paretic muscle atrophy and non-contractile tissue content in individual muscles of the post-stroke lower extremity. Journal of Biomechanics 4427412746. PubMed ID: 21945568 doi:10.1016/j.jbiomech.2011.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RoerdinkM.GeurtsA.C.de HaartM. & BeekP.J. (2009). On the relative contribution of the paretic leg to the control of posture after stroke. Neurorehabilitation & Neural Repair 23267274. PubMed ID: 19074685 doi:10.1177/1545968308323928

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van AsseldonkE.H.BuurkeJ.H.BloemB.R.RenzenbrinkG.J.NeneA.V.van der HelmF.C.T. & van der KooijH. (2006). Disentangling the contribution of the paretic and non-paretic ankle to balance control in stroke patients. Experimental Neurology 201441451. PubMed ID: 16814283 doi:10.1016/j.expneurol.2006.04.036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VieiraT.M.LoramI.D.MuceliS.MerlettiR. & FarinaD. (2012). Recruitment of motor units in the medial gastrocnemius muscle during human quiet standing: Is recruitment intermittent? What triggers recruitment? Journal of Neurophysiology 107666676. PubMed ID: 21994258 doi:10.1152/jn.00659.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WinterD.A.PatlaA.E.IshacM. & GageW.H. (2003). Motor mechanisms of balance during quiet standing. Journal of Electromyography and Kinesiology 134956. PubMed ID: 12488086 doi:10.1016/S1050-6411(02)00085-8

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 66 66 23
Full Text Views 8 8 3
PDF Downloads 12 12 8
Altmetric Badge
PubMed
Google Scholar