Challenging Standing Balance Reduces the Asymmetry of Motor Control of Postural Sway Poststroke

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

Background: Ankle plantarflexor muscle impairment contributes to asymmetrical postural control poststroke. Objective: This study examines the relationship of plantarflexor electromyography (EMG) with anterior–posterior center of pressure (APCOP) in people poststroke during progressive challenges to standing balance. Methods: Ten people poststroke and 10 controls participated in this study. Anteriorly directed loads of 1% body mass (BM) were applied to the pelvis every 25–40 s until 5%BM was reached. Cross-correlation values between plantarflexor EMG and APCOP (EMG:APCOP) position and velocity were compared. Results: EMG:APCOP velocity correlations were stronger than EMG:APCOP position across all muscles (p < .01), and correlations were predominately stronger in the nonparetic compared with the paretic leg (p < .05). Increasing challenge to standing balance reduced asymmetry of EMG:APCOP relationships. Conclusions: These data suggest that sensory information reflected in APCOP velocity interacts more strongly with plantarflexor activity in people poststroke and controls than APCOP position. Furthermore, increasing challenge to standing balance reduces postural control asymmetry between legs poststroke.

Pollock, Hunt, Gallina, Ivanova, and Garland are with the Dept. of Physical Therapy, University of British Columbia, Vancouver, BC, Canada. Vieira and Gallina are with Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Turin, Italy. Vieira is also with Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil. Ivanova, and Garland are with the Faculty of Health Sciences, Western University, London, Ontario, Canada.

Address author correspondence to S. Jayne Garland at jgarland@uwo.ca.
  • Carpenter, M.G., Frank, J.S., Silcher, C.P., & Peysar, G.W. (2001). The influence of postural threat on the control of upright stance. Experimental Brain Research, 138, 210218. PubMed ID: 11417462 doi:10.1007/s002210100681

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, M.G., Murnaghan, C.D., & Inglis, J.T. (2010). Shifting the balance: Evidence of an exploratory role for postural sway. Neuroscience, 171, 196204. PubMed ID: 20800663 doi:10.1016/j.neuroscience.2010.08.030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Haart, M., Geurts, A.C., Huidekoper, S.C., Fasotti, L., & van Limbeek, J. (2004). Recovery of standing balance in postacute stroke patients: A rehabilitation cohort study. Archives of Physical Medicine and Rehabilitation, 85, 886895. PubMed ID: 15179641 doi:10.1016/j.apmr.2003.05.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickstein, R., & Abulaffio, N. (2000). Postural sway of the affected and nonaffected pelvis and leg in stance of hemiparetic patients. Archives of Physical Medicine and Rehabilitation, 81, 364367. PubMed ID: 10724084 doi:10.1016/S0003-9993(00)90085-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Giulio, I., Maganaris, C.N., Baltzopoulos, V., & Loram, I.D. (2009). The proprioceptive and agonist roles of gastrocnemius, soleus and tibialis anterior muscles in maintaining human upright posture. The Journal of Physiology, 587, 23992416. PubMed ID: 19289550 doi:10.1113/jphysiol.2009.168690

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fimland, M.S., Moen, P.M., Hill, T., Gjellesvik, T.I., Torhaug, T., Helgerud, J., & Hoff, J. (2011). Neuromuscular performance of paretic versus non-paretic plantar flexors after stroke. European Journal of Applied Physiology, 111, 30413049. PubMed ID: 21455614 doi:10.1007/s00421-011-1934-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garland, S.J., Gray, V.L., & Knorr, S. (2009). Muscle activation patterns and postural control following stroke. Motor Control, 13, 387411. PubMed ID: 20014647 doi:10.1123/mcj.13.4.387

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garland, S.J., Pollock, C.L., & Ivanova, T.D. (2014). Could motor unit control strategies be partially preserved after stroke? Frontiers in Human Neuroscience, 8, 864. PubMed ID: 25400568 doi:10.3389/fnhum.2014.00864

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatev, P., Thomas, S., Kepple, T., & Hallett, M. (1999). Feedforward ankle strategy of balance during quiet stance in adults. The Journal of Physiology, 514 (Pt 3), 915928. doi:10.1111/j.1469-7793.1999.915ad.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geurts, A.C., de Haart, M., van Nes, I.J., & Duysens, J. (2005). A review of standing balance recovery from stroke. Gait & Posture, 22, 267281. PubMed ID: 16214666 doi:10.1016/j.gaitpost.2004.10.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gowland, C., Stratford, P., Ward, M., Moreland, J., Torresin, W., Van Hullenaar, S., . . . Plews, N. (1993). Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment. Stroke, 24, 5863. PubMed ID: 8418551 doi:10.1161/01.STR.24.1.58

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gowland, C., VanHullenaar, S., Torresin, W., . . . Barclay-Goddard, R. (1995). Chedoke-McMaster stroke assessment: Development, validation and administration manual (1st ed.). Hamilton, Ontario: Chedoke-McMaster Hospitals and McMaster University.

    • Search Google Scholar
    • Export Citation
  • Hocherman, S., Dickstein, R., Hirschbiene, A., & Pillar, T. (1988). Postural responses of normal geriatric and hemiplegic patients to a continuing perturbation. Experimental Neurology, 99, 388402. PubMed ID: 3338530 doi:10.1016/0014-4886(88)90156-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F.B., & Nashner, L.M. (1986). Central programming of postural movements: Adaptation to altered support-surface configurations. Journal of Neurophysiology, 55, 13691381. PubMed ID: 3734861 doi:10.1152/jn.1986.55.6.1369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howe, J.A., Inness, E.L., Venturini, A., Williams, J.I., & Verrier, M.C. (2006). The Community Balance and Mobility Scale—a balance measure for individuals with traumatic brain injury. Clinical Rehabilitation, 20, 885895. PubMed ID: 17008340 doi:10.1177/0269215506072183

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, M.A., Polgar, J., Weightman, D., & Appleton, D. (1973). Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. Journal of the Neurological Sciences, 18, 111129. PubMed ID: 4120482 doi:10.1016/0022-510X(73)90023-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knorr, S., Brouwer, B., & Garland, S.J. (2010). Validity of the Community Balance and Mobility Scale in community-dwelling persons after stroke. Archives of Physical Medicine and Rehabilitation, 91, 890896. PubMed ID: 20510980 doi:10.1016/j.apmr.2010.02.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, K.C., Wu, C.Y., Chen, C.L., Chern, J.S., & Hong, W.H. (2007). Effects of object use on reaching and postural balance: A comparison of patients with unilateral stroke and healthy controls. American Journal of Physical Medicine and Rehabilitation, 86, 791799. PubMed ID: 17885311 doi:10.1097/PHM.0b013e318151fb81

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loram, I.D., Gollee, H., Lakie, M., & Gawthrop, P.J. (2011). Human control of an inverted pendulum: Is continuous control necessary? Is intermittent control effective? Is intermittent control physiological? The Journal of Physiology, 589, 307324. PubMed ID: 21098004 doi:10.1113/jphysiol.2010.194712

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukacs, M., Vecsei, L., & Beniczky, S. (2008). Large motor units are selectively affected following a stroke. Clinical Neurophysiology, 119, 25552558. PubMed ID: 18809353 doi:10.1016/j.clinph.2008.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marigold, D.S., Eng, J.J. (2006). The relationship of asymmetric weight-bearing with postural sway and visual reliance in stroke. Gait & Posture, 23, 249255. PubMed ID: 16399522 doi:10.1016/j.gaitpost.2005.03.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masani, K., Popovic, M.R., Nakazawa, K., Kouzaki, M., & Nozaki, D. (2003). Importance of body sway velocity information in controlling ankle extensor activities during quiet stance. Journal of Neurophysiology, 90, 37743782. PubMed ID: 12944529 doi:10.1152/jn.00730.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masani, K., Vette, A.H., Abe, M.O., Nakazawa, K., & Popovic, M.R. (2011). Smaller sway size during quiet standing is associated with longer preceding time of motor command to body sway. Gait & Posture, 33, 1417. PubMed ID: 21071228 doi:10.1016/j.gaitpost.2010.08.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCombe, W.S., & Prettyman, M.G. (2012). Arm training in standing also improves postural control in participants with chronic stroke. Gait & Posture, 36, 419424. doi:10.1016/j.gaitpost.2012.03.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollock, C.L., Ivanova, T.D., Hunt, M.A., & Garland, S.J. (2014). Motor unit recruitment and firing rate in medial gastrocnemius muscles during external perturbations in standing in humans. Journal of Neurophysiology, 112, 16781684. PubMed ID: 24990568 doi:10.1152/jn.00063.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portela, F.M., Rodrigues, E.C., & de Sá Ferreira, A. (2014). A critical review of position- and velocity-based concepts of postural control during upright stance. Human Movement, 15, 227233. doi:10.1515/humo-2015-0016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, J.W., Barrance, P.J., Buchanan, T.S., & Higginson, J.S. (2011). Paretic muscle atrophy and non-contractile tissue content in individual muscles of the post-stroke lower extremity. Journal of Biomechanics, 44, 27412746. PubMed ID: 21945568 doi:10.1016/j.jbiomech.2011.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roerdink, M., Geurts, A.C., de Haart, M., & Beek, P.J. (2009). On the relative contribution of the paretic leg to the control of posture after stroke. Neurorehabilitation & Neural Repair, 23, 267274. PubMed ID: 19074685 doi:10.1177/1545968308323928

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Asseldonk, E.H., Buurke, J.H., Bloem, B.R., Renzenbrink, G.J., Nene, A.V., van der Helm, F.C.T., & van der Kooij, H. (2006). Disentangling the contribution of the paretic and non-paretic ankle to balance control in stroke patients. Experimental Neurology, 201, 441451. PubMed ID: 16814283 doi:10.1016/j.expneurol.2006.04.036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vieira, T.M., Loram, I.D., Muceli, S., Merletti, R., & Farina, D. (2012). Recruitment of motor units in the medial gastrocnemius muscle during human quiet standing: Is recruitment intermittent? What triggers recruitment? Journal of Neurophysiology, 107, 666676. PubMed ID: 21994258 doi:10.1152/jn.00659.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winter, D.A., Patla, A.E., Ishac, M., & Gage, W.H. (2003). Motor mechanisms of balance during quiet standing. Journal of Electromyography and Kinesiology, 13, 4956. PubMed ID: 12488086 doi:10.1016/S1050-6411(02)00085-8

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 394 377 49
Full Text Views 29 24 1
PDF Downloads 23 19 1