Integrated Analysis of Young Swimmers’ Sprint Performance

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

To analyze young swimmers’ performance regarding sex and skill level, 23 boys and 26 girls (15.7 ± 0.8 and 14.5 ± 0.8 years old, respectively) were assessed for anthropometry, flexibility, strength, drag, coordination, and biomechanical variables. During a 50-m maximal front-crawl bout, seven aerial and six underwater Qualisys cameras assessed kinematics, and a load cell was used to measure drag (Tedea, United Kingdom) and tethered swimming force. A multivariate analysis of variance test (p < .05) enabled us to observe differences between skill levels in speed, stroke frequency, stroke index, and intracyclic velocity variations, but most relevant differences were noticed when comparing sexes, particularly for anthropometrics, shoulder flexibility, speed, stroke frequency, stroke length, drag, mechanical power, power per stroke, and maximal and mean force. Considering the included variables, only male swimmers’ performance could be predicted through multiple linear regression, with stroke index, left shoulder flexion, and intracycle velocity variations showing great importance in achieving better results.

Silva, Vilas-Boas, and Fernandes are with LABIOMEP (Porto Biomechanics Laboratory), Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal. Figueiredo is with Portugal Football School, Portuguese Football Federation, Lisbon, Portugal. Ribeiro is with the Dept. of Performance Optimization, Sporting Clube de Braga, Braga, Portugal. Alves is with the Faculty of Human Movement Technical, University of Lisbon, Lisbon, Portugal. Seifert is with CETAPS EA3832, Faculty of Sport Sciences, University of Rouen Normandy, Mont-Saint-Aignan, France.

Address author correspondence to Ana F. Silva at anafilsilva@gmail.com.
Motor Control
Article Sections
References
  • BarbosaT.M.CostaM.MarinhoD.A.CoelhoJ.MoreiraM. & SilvaA.J. (2010). Modeling the links between young swimmers’ performance: Energetic and biomechanic profiles. Pediatric Exercise Science 22(3) 379391. PubMed ID: 20814034 doi:10.1123/pes.22.3.379

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bar-OrO.UnnithanV. & IllescasC. (1994). Physiologic considerations in age group swimming. In M. MiyashitaY. Mutoh & A.B. Richardson (Eds.) Medicine and science in aquatic sports (pp. 199205). Basel, Switzerland: Karger.

    • Search Google Scholar
    • Export Citation
  • CholletD.ChaliesS. & ChatardJ.C. (2000). A new index of coordination for the crawl: Description and usefulness. International Journal of Sports Medicine 21(1) 5459. PubMed ID: 10683100 doi:10.1055/s-2000-8855

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DavidsK.ButtonC. & BennettS. (2008). Dynamics of skill acquisition: A constraints-led approach. Champaign, IL: Human Kinetics.

  • DoudaH.T.ToubekisA.G.GeorgiouC.GourgoulisV. & TokmakidisS.P. (2010). Predictors of performance in pre-pubertal and pubertal male and female swimmers. Biomechanics and Medicine in Swimming XI(4) 252254.

    • Search Google Scholar
    • Export Citation
  • EricssonK.A.KrampeR.T. & Tesch-RömerC. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review 100(3) 363406. doi:10.1037/0033-295X.100.3.363

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FernandesR.J.RibeiroJ.FigueiredoP.SeifertL. & Vilas-BoasJ.P. (2012). Kinematics of the hip and body center of mass in front crawl. Journal of Human Kinetics 331523. PubMed ID: 23486784 doi:10.2478/v10078-012-0040-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GeladasN.D.NassisG.P. & PavlicevicS. (2005). Somatic and physical traits affecting sprint swimming performance in young swimmers. International Journal of Sports Medicine 26(02) 139144. doi:10.1055/s-2004-817862

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GlazierP. (2006). Measuring coordination and variability in coordination. In K. DavidsS. Bennett & K.M. Newell (Eds.) Movement System Variability (pp. 167181). Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • HongS.L. & NewellK.M. (2006). Change in the organization of degrees of freedom with learning. Journal of Motor Behavior 38(2) 88100. PubMed ID: 16531392 doi:10.3200/JMBR.38.2.88-100

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KojimaK.JamisonP.L. & StagerJ.M. (2012). Multi-age-grouping paradigm for young swimmers. Journal of Sports Sciences 30(3) 313320. PubMed ID: 22182400 doi:10.1080/02640414.2011.640705

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LattE.JuerimaeJ.MaeestuJ.PurgeP.RaemsonR.HaljasteK. . . . JuerimaeT. (2010). Physiological, biomechanical and anthropometrical predictors of sprint swimming performance in adolescent swimmers. Journal of Sports Science and Medicine 9(3) 398404. PubMed ID: 24149633

    • Search Google Scholar
    • Export Citation
  • MacDonaldS.W.S.NybergL. & BäckmanL. (2006). Intra-individual variability in behavior: Links to brain structure, neurotransmission and neuronal activity. Trends in neurosciences 29(8) 474480. PubMed ID: 16820224 doi:10.1016/j.tins.2006.06.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MadeleineP.MathiassenS.E. & Arendt-NielsenL. (2008). Changes in the degree of motor variability associated with experimental and chronic neck–shoulder pain during a standardised repetitive arm movement. Experimental Brain Research 185(4) 689698. PubMed ID: 18030457 doi:10.1007/s00221-007-1199-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MaglischoE. (2003). Swimming fastest. Champaign, USA: Human Kinetics.

  • MorouçoP.KeskinenK.L.Vilas-BoasJ.P. & FernandesR.J. (2011). Relationship between tethered forces and the four swimming techniques performance. Journal of Applied Biomechanics 27(2) 161169. doi:10.1123/jab.27.2.161

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MorouçoP.MarinhoD.A.AmaroN.M.Pérez-TurpinJ.A. & MarquesM.C. (2012). Effects of dry-land strength training on swimming performance: A brief review. Journal of Human Sport & Exercise 7(2) 553559. doi:10.4100/jhse.2012.72.18

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MorouçoP.G.Vilas-BoasJ.P. & FernandesR.J. (2012). Evaluation of adolescent swimmers through a 30-s tethered test. Pediatric Exercise Science 24(2) 312321. doi:10.1123/pes.24.2.312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NasirzadeA.SadeghiH.SobhkhizA.MohammadianK.NikoueiA.BaghaiyanM. & FattahiA. (2015). Multivariate analysis of 200-m front crawl swimming performance in young male swimmers. Acta of Bioengineering and Biomechanics 17(3) 137143. PubMed ID: 26686911

    • Search Google Scholar
    • Export Citation
  • NewellK.M. (1986). Constraints on the development of coordination. In M.G. Wade & H.T.A. Whiting (Eds.) Motor development in children: Aspects of coordination and control (pp. 341361). Amsterdam, Netherlands: Nijhoff.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NorkinC.C. & WhiteD.J. (2009). Measurement of joint motion: A guide to goniometry. Philadelphia, USA: FA Davis.

  • PelayoP.SidneyM.KherifT.CholletD. & TournyC. (1996). Stroking characteristics in freestyle swimming and relationships with anthropometric characteristics. Journal of Applied Biomechanics 12(2) 197206. doi:10.1123/jab.12.2.197

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PhillipsE.DavidsK.RenshawI. & PortusM. (2012). Expert performance in sport and the dynamics of talent development. Sports Medicine 40(4) 271283. doi:10.2165/11319430-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RibeiroJ.FigueiredoP.GuidettiL.AlvesF.ToussaintH.Vilas-BoasJ.P. . . . FernandesR.J. (2016). AquaTrainer® snorkel does not increase hydrodynamic drag but influences turning time. International Journal of Sports Medicine 37(4) 324328.

    • Search Google Scholar
    • Export Citation
  • RibeiroJ.FigueiredoP.MoraisS.AlvesF.ToussaintH.Vilas-BoasJ.P. & FernandesR.J. (2017). Biomechanics, energetics and coordination during extreme swimming intensity: Effect of performance level. Journal of Sports Sciences 35(16) 16141621. doi:10.1080/02640414.2016.1227079

    • Search Google Scholar
    • Export Citation
  • SaavedraJ.M.EscalanteY. & RodriguezF.A. (2010). A multivariate analysis of performance in young swimmers. Pediatric Exercise Science 22(1) 135151. PubMed ID: 20332546 doi:10.1123/pes.22.1.135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchnitzlerC.SeifertL.AlbertyM. & CholletD. (2010). Hip velocity and arm coordination in front crawl swimming. International Journal of Sports Medicine 31(12) 875881. PubMed ID: 21072734 doi:10.1055/s-0030-1265149

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SeifertL.CholletD. & RouardA. (2007). Swimming constraints and arm coordination. Human Movement Science 266886. PubMed ID: 17126942 doi:10.1016/j.humov.2006.09.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SeifertL.DelignieresD.BoulesteixL. & CholletD. (2007). Effect of expertise on butterfly stroke coordination. Journal of Sports Sciences 25(2) 131141. PubMed ID: 17127588 doi:10.1080/02640410600598471

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SeifertL.ToussaintH.M.AlbertyM.SchnitzlerC. & CholletD. (2010). Arm coordination, power, and swim efficiency in national and regional front crawl swimmers. Human Movement Science 29(3) 426439. PubMed ID: 20430465 doi:10.1016/j.humov.2009.11.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SilvaA.FigueiredoP.SoaresS.SeifertL.Vilas-BoasJ. & FernandesR. (2012). Front crawl technical characterization of 11-to 13-year- old swimmers. Pediatric Exercise Science 24(3) 409419. PubMed ID: 22971557 doi:10.1123/pes.24.3.409

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SilvaA.F.SeifertL.SousaM.WilligR.AlvesF. . . . FigueiredoP. (2014). A multi-analysis of performance in 13- to 15-year- old swimmers: A pilot study. Paper presented at the Biomechanics and Medicine in Swimming XII. Canberra, Australia: Australian Institute of Sport.

    • Search Google Scholar
    • Export Citation
  • SrinivasanD.RudolfssonT. & MathiassenS.E. (2015). Between- and within-subject variance of motor variability metrics in females performing repetitive upper-extremity precision work. Journal of Electromyography and Kinesiology 25(1) 121129. PubMed ID: 25467549 doi:10.1016/j.jelekin.2014.10.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StarkesJ. & AllardF. (1993). Cognitive issues in motor expertise (Vol. 102). Amsterdam, Netherland: Elsevier.

  • SvendsenJ.H. & MadeleineP. (2010). Amount and structure of force variability during short, ramp and sustained contractions in males and females. Human Movement Science 29(1) 3547. PubMed ID: 19853318 doi:10.1016/j.humov.2009.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TannerJ.M. & WhitehouseR.H. (1982). Atlas of children’s growth normal variation and growth disorders. London, UK: Academic Press.

    • Search Google Scholar
    • Export Citation
  • ToussaintH.M.DeloozeM.VanrossemB.LeijdekkersM. & DignumH. (1990). The effect of growth on drag in young swimmers. International Journal of Sport Biomechanics 6(1) 1828. doi:10.1123/ijsb.6.1.18

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ToussaintH.M.RoosP.E. & KolmogorovS. (2004). The determination of drag in front crawl swimming. Journal of Biomechanics 37(11) 16551663. PubMed ID: 15388307 doi:10.1016/j.jbiomech.2004.02.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van DieënJ.H.Oude VrielinkH.H. & ToussaintH.M. (1993). An investigation into the relevance of the pattern of temporal activation with respect to erector spinae muscle endurance. European Journal of Applied Physiology and Occupational Physiology 66(1) 7075. doi:10.1007/BF00863403

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vilas-BoasJ.P.FernandesR.J. & BarbosaT. (2010). Intra-cycle velocity variations, swimming economy, performance and training in swimming. In L. SeifertD. Chollet & I. Mujika (Eds.) World book of swimming: From science to performance (pp. 119134). New York, NY: Nova Science Publishers Inc.

    • Search Google Scholar
    • Export Citation
  • ZamparoP. (2006). Effects of age and gender on the propelling efficiency of the arm stroke. European Journal of Applied Physiology 97(1) 5258. PubMed ID: 16468063 doi:10.1007/s00421-006-0133-9

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 204 204 47
Full Text Views 7 7 2
PDF Downloads 4 4 1
Altmetric Badge
PubMed
Google Scholar