Postural Control Underlying Head Movements While Tracking Visual Targets

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

The aim of this study was to investigate the relationship between postural regulation and tracking accuracy under static and moving visual target conditions in unipedal and bipedal standing postures. Postural time-to-contact stability boundaries decreased under more challenging visual target conditions for the unipedal posture, but this decrease was associated with lower visual tracking error. During bipedal support, there was independent control of the head and foot center of pressure, as higher frequencies at the head during the static visual task were associated with longer time-to-contact. These results demonstrate that decreased time-to-contact stability boundaries is a functional adaptation in postural tasks requiring visual control and provide evidence of the dependency of postural control on the nature of the suprapostural task.

Deprá is with the Laboratory of Biomechanics and Motor Behavior, Physical Education Dept., State University of Maringá, Paraná, Brazil. Amado and van Emmerik are with the Laboratory of Motor Control, Dept. of Kinesiology, University of Massachusetts Amherst, Amherst, MA.

Address author correspondence to Pedro Paulo Deprá at ppdepra@uem.br.
Motor Control
Article Sections
References
  • AmadoA.PalmerC.HamillJ. & Van EmmerikR.E.A. (2016). Coupling of postural and manual tasks in expert performers. Human Movement Science 46251260. PubMed ID: 26803676 doi:10.1016/j.humov.2015.12.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BardyB. (2004). Postural coordination dynamics in standing humans. In J.A.S. Kelso (Ed.) Coordination dynamics: Issues and trends (pp. 103121). Berlin/Heidelberg, Germany: Springer.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BardyB.G.MarinL.StoffregenT.A. & BootsmaR.J. (1999). Postural coordination modes considered as emergent phenomena. Journal of Experimental Psychology: Human Perception and Performance 25(5) 12841301. PubMed ID: 10531664

    • Search Google Scholar
    • Export Citation
  • BardyB.G.OullierO.BoostmaR. & StoffregenT. (2002). Dynamics of human postural transitions. Journal of Experimental Psychology: Human Perception and Performance 28(3) 499514.

    • Search Google Scholar
    • Export Citation
  • BardyB.G.OullierO.LagardeJ. & StoffregenT. (2007). On perturbation and pattern coexistence in postural coordination dynamics. Journal of Motor Behavior 39(4) 326336. PubMed ID: 17664174 doi:10.3200/JMBR.39.4.326-336

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CollinsJ.J.GravelleD.C.NiemiJ.HarryJ. & LipsitzL.A. (2003). Noise-enhanced human sensorimotor function. IEEE Engineering in Medicine and Biology Magazine 22(2) 7683. doi:10.1109/MEMB.2003.1195700

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DepráP. & MouraF. (2013August). Analysis of the behavior of the center of pressure in standing position using principal component analysis. Paper presented at SB2013 XXIV Congress of the International Society of Biomechanics/XV Brazilian Congress of BiomechanicsNatal, Brazil. Retrieved from https://isbweb.org/images/conferences/isb-congresses/2013/poster/ps1-24b.pdf

    • Search Google Scholar
    • Export Citation
  • DuarteM. & ZatsiorskyV.M. (2000). On the fractal properties of natural human standing. Neuroscience Letters 283(3) 173176. PubMed ID: 10754215 doi:10.1016/S0304-3940(00)00960-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FaugloireE.BardyB.MerhiO. & StoffregenT. (2005). Exploring coordination dynamics of the postural system with real-time visual feedback. Neuroscience Letters 374(2) 136141. PubMed ID: 15644280 doi:10.1016/j.neulet.2004.10.043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FaugloireE.BardyB. & StoffregenT. (2006). Dynamics of learning new postural patterns: Influence on preexisting spontaneous behaviors. Journal of Motor Behavior 38(4) 299312. PubMed ID: 16801321 doi:10.3200/JMBR.38.4.299-312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FlemmingJ. & HornesA. (2013). Lissajous-like figures with triangular and square waves. Revista Brasileira de Ensino de Física 35(3) 37023704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FreitasS. & DuarteM. (2012). Joint coordination in young and older adults during quiet stance: Effect of visual feedback of the center of pressure. Gait & Posture 35(1) 8387. PubMed ID: 21962847 doi:10.1016/j.gaitpost.2011.08.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GalicaA.M.KangH.G.PriplataA.A.D’AndreaS.E.StarobinetsO.V.SorondF.A. & LipsitzL.A. (2009). Subsensory vibrations to the feet reduce gait variability in elderly fallers. Gait & Posture 30(3) 383387. PubMed ID: 19632845 doi:10.1016/j.gaitpost.2009.07.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GilA.OliveiraM.CoelhoV.CarvalhoC.TeixeiraD. & SilvaR.Jr. (2011). Relationship between force platform and two functional tests for measuring balance in the elderly. Revista Brasileira de Fisioterapia 15(6) 429435. PubMed ID: 22002192 doi:10.1590/S1413-35552011005000024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GruberA.BusaM.GortonG.IIIVan EmmerikR.E.A.MassoP. & HamillJ. (2011). Time-to-contact and multiscale entropy identify differences in postural control in adolescent idiopathic scoliosis. Gait & Posture 34(1) 1318. PubMed ID: 21478018 doi:10.1016/j.gaitpost.2011.02.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HaddadJ.GagnonJ.HassonC.Van EmmerikR.E.A. & HamillJ. (2006). Evaluation of time-to-contact measures for assessing postural stability. Journal of Applied Biomechanics 22(2) 155161. PubMed ID: 16871006 doi:10.1123/jab.22.2.155

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HaddadJ.RietdykS.ClaxtonL. & HuberJ. (2013). Task-dependent postural control throughout the lifespan. Exercise and Sport Sciences Reviews 41123132. doi:10.1097/JES.0b013e3182877cc8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HassonC.Van EmmerikR.E.A. & CaldwellG. (2008). Predicting dynamic postural instability using center of mass time-to-contact information. Journal of Biomechanics 4121212129. PubMed ID: 18556003 doi:10.1016/j.jbiomech.2008.04.031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HyvarinenA. (2009). Principal component analysis. Retrieved from http://www.mv.helsinki.fi/home/amoaning/movies/uml/pca_handout.pdf

    • PubMed
    • Export Citation
  • LiR.WalterH.CurryC.RathR.PetersonN. & StoffregenT.A. (2018). Postural time-to-contact as a precursor of visually induced motion sickness. Experimental Brain Research 23616311641. PubMed ID: 29589080 doi:10.1007/s00221-018-5246-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MakiB.HollidayP. & TopperA. (1994). A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. Journal of Gerontology 497284. PubMed ID: 8126355 doi:10.1093/geronj/49.2.M72

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MenezesR.MisutaM.FigueroaP.CunhaS. & BarrosR. (2005). Variabilidade da representação por componentes principais das posições de jogadores de futebol. XI Congresso Brasileiro de BiomecânicaJoão Pessoa, Brazil.

    • Search Google Scholar
    • Export Citation
  • ParreiraR.BoerM.RabelloL.CostaV.D.OliveiraE.D.Jr. & SilvaR.A. (2013). Age-related differences in center of pressure measures during one-leg stance are time dependent. Journal of Applied Biomechanics 29(3) 312316. PubMed ID: 22927501 doi:10.1123/jab.29.3.312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PolittiF.de Oliveira GonzalezT.Fidelis de Paula GomesC.A.el HageY.AmaralA.P.AmorimC.F. & Biasotto-GonzalezD.A. (2012). Effect of the usual weight of a backpack on body sway during quiet standing. Journal of Physical Therapy Science 24(11) 10791082. doi:10.1589/jpts.24.1079

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PriplataA.NiemiJ.SalenM.HarryJ.LipsitzL.A. & CollinsJ.J. (2002). Noise-enhanced human balance control. Physical Review Letters 89(23) 238101. PubMed ID: 12485044 doi:10.1103/PhysRevLett.89.238101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RiccioG. (1993). Information in movement variability. About the qualitative dynamics of posture and orientation. In K. Newell& D. Corcos (Eds.) Variability and motor control (pp. 317357). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • RiccioG.E. & StoffregenT.A. (1991). An ecological theory of motion sickness and postural instability. Ecological Psychology 3(3) 195240. PubMed ID: 10754215 doi:10.1207/s15326969eco0303_2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RiccioG.E. & StoffregenT.A. (1988). Affordances as constraints on the control of stance. Human Movement Science 7(2) 265300. doi:10.1016/0167-9457(88)90014-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RocchiL.ChiariL. & CappelloA. (2004). Feature selection of stabilometric parameters based on principal component analysis. Medical & Biological Engineering & Computing 42(1) 7179. PubMed ID: 14977225 doi:10.1007/BF02351013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SilvaA. & JohnsonM. (2013). Does forward head posture affect postural control in human healthy volunteers? Gait & Posture 38(2) 352353. PubMed ID: 23219786 doi:10.1016/j.gaitpost.2012.11.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SlobounovS.CaoC.JaiswalN. & NewellK. (2009). Neural basis of postural instability identified by VTC and EEG. Experimental Brain Research 199(1) 116. PubMed ID: 19655130 doi:10.1007/s00221-009-1956-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SlobounovS.SlobounovaE. & NewellK. (1997). Virtual time-to-collision and human postural control. Journal of Motor Behavior 29(3) 263281. PubMed ID: 12453785 doi:10.1080/00222899709600841

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SmartL.J.Jr.MobleyB.S.OttenE.W.SmithD.L. & AminM.R. (2004). Not just standing there: The use of postural coordination to aid visual tasks. Human Movement Science 22(6) 769780. PubMed ID: 15063053 doi:10.1016/j.humov.2004.02.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StephenD.G.WilcoxB.J.NiemiJ.B.FranzJ.KerriganD.C. & D’AndreaS.E. (2012). Baseline-dependent effect of noise-enhanced insoles on gait variability in healthy elderly walkers. Gait & Posture 36(3) 537540. PubMed ID: 22739049 doi:10.1016/j.gaitpost.2012.05.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StoffregenT.A.HoveP.BardyB.RileyM. & BonnetC. (2007). Postural stabilization of perceptual but not cognitive performance. Journal of Motor Behavior 39(2) 126138. PubMed ID: 17428758 doi:10.3200/JMBR.39.2.126-138

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StoffregenT.A.PagulayanR.J.BardyB.G. & HettingerL.J. (2000). Modulating postural control to facilitate visual performance. Human Movement Science 19203220. doi:10.1016/S0167-9457(00)00009-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StoffregenT.A.SmartL.BardyB. & PagulayanR. (1999). Postural stabilization of looking. Human Perception and Performance 25(6) 16411658. doi:10.1037/0096-1523.25.6.1641

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sylos LabiniF.MeliA.TufarelliD. & ColosimoA. (2008). A new set of parameters for computerised dynamic posturography. Biophysics and Bioengineering Letters 1(1) 19.

    • Search Google Scholar
    • Export Citation
  • TurveyM.T. (1990). Coordination. American Psychologist 45(8) 938953. PubMed ID: 2221565 doi:10.1037/0003-066X.45.8.938

  • Van EmmerikR.E.A.RemeliusJ.JohnsonM.ChungL. & Kent-BraunJ. (2010). Postural control in women with multiple sclerosis: Effects of task, vision and symptomatic fatigue. Gait & Posture 32608614. PubMed ID: 20943393 doi:10.1016/j.gaitpost.2010.09.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van EmmerikR.E.A. & Van WegenE.H.H. (2000). On variability and stability in human movement. Journal of Applied Biomechanics 16394406. doi:10.1123/jab.16.4.394

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van EmmerikR.E.A. & Van WegenE.H.H. (2002). On the functional aspects of variability in postural control. Exercise and Sport Sciences Reviews 30(4) 177183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WinterD.A. (2009). Biomechanics and motor control of human movement. New York, NY: Wiley.

Article Metrics
All Time Past Year Past 30 Days
Abstract Views 113 113 36
Full Text Views 16 16 3
PDF Downloads 15 15 2
Altmetric Badge
PubMed
Google Scholar