The Impact of Different Movement Types on Motor Planning and Execution in Individuals With Autism Spectrum Disorder

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

Although there are consistent reports that motor skills are affected in individuals with autism, the details are still debated; specifically, why individuals spend more time preparing movements and whether or not movement execution takes longer. The present study investigated if the conflicting reports were related to: (a) differences in movement type and (b) if longer reaction times were related to the time for motor planning or for force-generation processes. Participants performed three different movement types. People with autism had longer premotor reaction times and movement times for the three-dimensional movements only. We suggest individuals with autism have difficulty planning and executing unconstrained reaching movements specifically. The present results are consistent with evidence that autistic individuals have more difficulty effectively using visual feedback but can use tactile feedback to execute reaching movements efficiently and accurately.

Zheng, Naiman, Passmore, and Glazebrook are with the Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada. Zheng is also with the Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada. Skultety and Lyons are with the Dept. of Kinesiology, McMaster University, Hamilton, Ontario, Canada. Passmore and Glazebrook are also with Health, Leisure, and Human Performance Research Institute, University of Manitoba, Winnipeg, Manitoba, Canada.

Address author correspondence to Ran Zheng at rzheng1@ualberta.ca.
Motor Control
Article Sections
References
  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, DC: American Psychiatric Association.

    • Search Google Scholar
    • Export Citation
  • AnsonJ.G. (1982). Memory drum theory: Alternative tests and explanations for the complexity effects on simple reaction time. Journal of Motor Behavior 14(3) 228246. PubMed ID: 15153412 doi:10.1080/00222895.1982.10735276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AnsonJ.G. (1989). Effects of moment of inertia on simple reaction time. Journal of Motor Behavior 21(1) 6071. PubMed ID: 15117673 doi:10.1080/00222895.1989.10735465

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Autism Speaks Inc. (2018). Autism speaks. Retrieved from https://www.autismspeaks.org/science-news/cdc-increases-estimate-autisms-prevalence-15-percent-1-59-children

    • Export Citation
  • BastianA.J. (2006). Learning to predict the future: The cerebellum adapts feedforward movement control. Current Opinion in Neurobiology 16(6) 645649. PubMed ID: 17071073 doi:10.1016/j.conb.2006.08.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BockO. & ArnoldK. (1992). Motor control prior to movement onset: Preparatory mechanisms for aiming at visual targets. Experimental Brain Research 9209216.

    • Search Google Scholar
    • Export Citation
  • BotwinickJ. & ThompsonL.W. (1966). Components of reaction time in relation to age and sex. The Journal of Genetic Psychology 108(2) 175183. PubMed ID: 6012443 doi:10.1080/00221325.1966.10532776

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CampioneG.C.PiazzaC.VillaL. & MolteniM. (2016). Three-dimensional kinematic analysis of prehension movements in young children with autism spectrum disorder: New insights on motor impairment. Journal of Autism and Developmental Disorders 46(6) 19851999. PubMed ID: 26861718 doi:10.1007/s10803-016-2732-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChristinaR.W. & RoseD.J. (1985). Premotor and motor reaction time as a function of response complexity. Research Quarterly for Exercise and Sport 56(4) 306315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CourchesneE.TownsendJ.AkshoomoffN.SaitohO.Yeung-CourchesneR.LincolnA. . . . LauL. (1994). Impairment in shifting attention in autistic and cerebellar patients. Behavioral Neuroscience 108(5) 848865. PubMed ID: 7826509 doi:10.1037/0735-7044.108.5.848

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DawsonG.TothK.AbbottR.OsterlingJ.MunsonJ.EstesA. & LiawJ. (2004). Early social attention impairments in autism: Social orienting, joint attention, and attention to distress. Developmental Psychology 40(2) 271283. PubMed ID: 14979766 doi:10.1037/0012-1649.40.2.271

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeweyD.CantellM. & CrawfordS.G. (2007). Motor and gestural performance in children with autism spectrum disorders, developmental coordination disorder, and/or attention deficit hyperactivity disorder. Journal of the International Neuropsychological Society 13246256. PubMed ID: 17286882 doi:10.1017/S1355617707070270

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DowdA.M.McGinleyJ.L.TaffeJ.R. & RinehartN.J. (2012). Do planning and visual integration difficulties underpin motor dysfunction in autism? A kinematic study of young children with autism. Journal of Autism and Developmental Disorders 42(8) 15391548. PubMed ID: 22105140 doi:10.1007/s10803-011-1385-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ElliottD.HansenS.GriersonL.E.M.LyonsJ.BennettS.J. & HayesS.J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin 136(6) 10231044. PubMed ID: 20822209 doi:10.1037/a0020958

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ElliottD.HansenS.MendozaJ. & TremblayL. (2004). Learning to optimize speed, accuracy, and energy expenditure: A framework for understanding speed-accuracy relations in goal-directed aiming. Journal of Motor Behavior 36(3) 339351. PubMed ID: 15262629 doi:10.3200/JMBR.36.3.339-351

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FittsP.M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47(6) 381391. PubMed ID: 13174710 doi:10.1037/h0055392

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ForgaardC.J.MaslovatD.CarlsenA.N.ChuaR. & FranksI.M. (2013). Startle reveals independent preparation and initiation of triphasic EMG burst components in targeted ballistic movements. Journal of Neurophysiology 110(9) 21292139. PubMed ID: 23926044 doi:10.1152/jn.00888.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FournierK.AHassC.J.NaikS.K.LodhaN. & CauraughJ.H. (2010). Motor coordination in autism spectrum disorders: A synthesis and meta-analysis. Journal of Autism and Developmental Disorders 40(10) 12271240. PubMed ID: 20195737 doi:10.1007/s10803-010-0981-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GlazebrookC.GonzalezD.HansenS. & ElliottD. (2009). The role of vision for online control of manual aiming movements in persons with autism spectrum disorders. Autism: The International Journal of Research and Practice 13(4) 411433. PubMed ID: 19535469 doi:10.1177/1362361309105659

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GlazebrookC.M.ElliottD. & LyonsJ. (2006). A kinematic analysis of how young adults with and without autism plan and control goal-directed movements. Motor Control 10(3) 244264. PubMed ID: 17106133 doi:10.1123/mcj.10.3.244

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GlazebrookC.M.ElliottD. & SzatmariP. (2008). How do individuals with autism plan their movements? Journal of Autism and Developmental Disorders 38(1) 114126. PubMed ID: 17436068 doi:10.1007/s10803-007-0369-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GriersonL.E.M. & ElliottD. (2008). Kinematic analysis of goal-directed aims made against early and late perturbations: An investigation of the relative influence of two online control processes. Human Movement Science 27(6) 839856. PubMed ID: 18768232 doi:10.1016/j.humov.2008.06.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HallettM.LebiedowskaM.K.ThomasS.L.StanhopeS.J.DencklaM.B. & RumseyJ. (1993). Locomotion of autistic adults. Archives of Neurology 50(12) 13041308. PubMed ID: 8257307 doi:10.1001/archneur.1993.00540120019007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HappéF. & FrithU. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders 36(1) 525. PubMed ID: 16450045 doi:10.1007/s10803-005-0039-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HasbroucqT.PossamaïC.A.BonnetM. & VidalF. (1999). Effect of the irrelevant location of the response signal on choice reaction time: An electromyographic study in humans. Psychophysiology 36(4) 522526. PubMed ID: 10432802 doi:10.1017/S0048577299001602

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HaswellC.C.IzawaJ.DowellL.R.MostofskyS.H. & ShadmehrR. (2009). Representation of internal models of action in the autistic brain. Nature Neuroscience 12(8) 970972. PubMed ID: 19578379 doi:10.1038/nn.2356

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HenryF.M. & RogersD.E. (1960). Increased response latency for complicated movements and a “memory drum” theory of neuromotor reaction. Research Quarterly. American Association for Health Physical Education and Recreation 31(3) 448458. doi:10.1080/10671188.1960.10762052

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HernándezO.H.Vogel-SprottM.Huchín-RamirezT.C. & Aké-EstradaF. (2006). Acute dose of alcohol affects cognitive components of reaction time to an omitted stimulus: Differences among sensory systems. Psychopharmacology 184(1) 7581. PubMed ID: 16333652 doi:10.1007/s00213-005-0237-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HickW.E. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psychology 4(1) 1126. doi:10.1080/17470215208416600

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KahnemanD. (2011). Thinking fast and slow. New York, NY: Macmillan.

  • LandaR. & Garrett-MayerE. (2006). Development in infants with autism spectrum disorders: A prospective study. Journal of Child Psychology and Psychiatry and Allied Disciplines 47(6) 629638. PubMed ID: 16712640 doi:10.1111/j.1469-7610.2006.01531.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MackrousI. & ProteauL. (2007). Specificity of practice results from differences in movement planning strategies. Experimental Brain Research 183(2) 181193. PubMed ID: 17618424 doi:10.1007/s00221-007-1031-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MariM.CastielloU.MarksD.MarraffaC. & PriorM. (2003). The reach-to-grasp movement in children with autism spectrum disorder. Philosophical Transactions of the Royal Society of London B: Biological Sciences 358(1430) 393403. PubMed ID: 12639336 doi:10.1098/rstb.2002.1205

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MolloyC.A.DietrichK.N. & BhattacharyaA.(2003). Postural stability in children with autism spectrum disorder. Journal of Autism and Developmental Disorders 33(6) 643652. PubMed ID: 14714933 doi:10.1023/B:JADD.0000006001.00667.4c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MostofskyS.H. & EwenJ.B. (2011). Altered connectivity and action model formation in autism is autism. The Neuroscientist: A Review Journal Bringing Neurobiology Neurology and Psychiatry 17(4) 437448. PubMed ID: 30451065 doi:10.1177/1073858410392381

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MostofskyS.H.PowellS.K.SimmondsD.J.GoldbergM.C.CaffoB. & PekarJ.J. (2009). Decreased connectivity and cerebellar activity in autism during motor task performance. Brain: A Journal of Neurology 132(9) 24132425. PubMed ID: 30462435 doi:10.1093/brain/awp088

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NazaraliN.GlazebrookC.M. & ElliottD. (2009). Movement planning and reprogramming in individuals with autism. Journal of Autism and Developmental Disorders 39(10) 14011411. PubMed ID: 19466535 doi:10.1007/s10803-009-0756-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NoensI.van Berckelaer-OnnesI.VerpoortenR. & van DuijnG. (2006). The ComFor: An instrument for the indication of augmentative communication in people with autism and intellectual disability. Journal of Intellectual Disability Research 50(Pt. 9) 621632. PubMed ID: 30461108 doi:10.1111/j.1365-2788.2006.00807.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PapadopoulosN.McGinleyJ.TongeB.J.BradshawJ.L.SaundersK. & RinehartN.J. (2012). An investigation of upper limb motor function in high functioning autism and Asperger’s disorder using a repetitive Fitts’ aiming task. Research in Autism Spectrum Disorders 6(1) 286292. doi:10.1016/j.rasd.2011.05.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PoljacE.HoofsV.PrincenM.M. & PoljacE. (2017). Understanding behavioural rigidity in autism spectrum conditions: The role of intentional control. Journal of Autism and Developmental Disorders 47(3) 714727. PubMed ID: 28070785 doi:10.1007/s10803-016-3010-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ProteauL. (2005). Visual afferent information dominates other sources of afferent information during mixed practice of a video-aiming task. Experimental Brain Research 161(4) 441456. PubMed ID: 15517215 doi:10.1007/s00221-004-2090-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RinehartN.J.BellgroveM.ATongeB.J.BreretonA.V.Howells-RankinD. & BradshawJ.L. (2006). An examination of movement kinematics in young people with high-functioning autism and Asperger’s disorder: Further evidence for a motor planning deficit. Journal of Autism and Developmental Disorders 36(6) 757767. PubMed ID: 16865551 doi:10.1007/s10803-006-0118-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RinehartN.J.BradshawJ.L.BreretonA.V. & TongeB.J. (2001). Movement preparation in high-functioning autism and Asperger disorder: A serial choice reaction time task involving motor reprogramming. Journal of Autism and Developmental Disorders 31(1) 7988. PubMed ID: 11439757 doi:10.1023/A:1005617831035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RinehartN.J.TongeB.J.BradshawJ.L.IansekR.EnticottP.G. & JohnsonK.A. (2006). Movement-related potentials in high-functioning autism and Asperger’s disorder. Developmental Medicine & Child Neurology 48(4) 272277. PubMed ID: 16542514 doi:10.1017/S0012162206000594

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RosenbaumD.A. (1980). Human movement initiation: Specification of arm, direction, and extent. Journal of Experimental Psychology 109(4) 444474. PubMed ID: 6449531 doi:10.1037/0096-3445.109.4.444

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SacreyL.-A.R.GermaniT.BrysonS.E. & ZwaigenbaumL. (2014). Reaching and grasping in autism spectrum disorder: A review of recent literature. Frontiers in Neurology 5(1) 6. PubMed ID: 24478753 doi:10.3389/fneur.2014.00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchmidtR. & LeeT. (2011). Motor control and learning—A behavioral emphasis (5th ed.). Champaign, IL: Human Kinetics.

  • SchneiderW. & ShiffrinR.M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review 84(1) 166. doi:10.1037/0033-295X.84.1.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SigmanM.DijamcoA.GratierM. & RozgaA. (2004). Early detection of core deficits in autism. Mental Retardation and Developmental Disabilities Research Reviews 10(4) 221233. PubMed ID: 15666338 doi:10.1002/mrdd.20046

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VasaR.A.MostofskyS.H. & EwenJ.B. (2016). The disrupted connectivity hypothesis of autism spectrum disorders: Time for the next phase in research. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 1(3) 245252. PubMed ID: 28083565 doi:10.1016/j.bpsc.2016.02.003

    • Search Google Scholar
    • Export Citation
  • Wainwright-SharpJ.A. & BrysonS.E. (1993). Visual orienting deficits in high-functioning people with autism. Journal of Autism and Developmental Disorders 23(1) 113. PubMed ID: 8463191 doi:10.1007/BF01066415

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WilliamsJ.H.G.WhitenA. & SinghT. (2004). A systematic review of action imitation in autistic spectrum disorder. Journal of Autism and Developmental Disorders 34(3) 285299. PubMed ID: 15264497 doi:10.1023/B:JADD.0000029551.56735.3a

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 100 100 40
Full Text Views 15 15 6
PDF Downloads 9 9 3
Altmetric Badge
PubMed
Google Scholar