Upper to Lower Limb Coordination Dynamics in Swimming Depending on Swimming Speed and Aquatic Environment Manipulations

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

Swimming is a challenging locomotion, involving the coordination of upper and lower limbs to propel the body forward in a highly resistive aquatic environment. During front crawl, freestyle stroke, alternating rotational motion of the upper limbs above and below the waterline, is coordinated with alternating lower limb pendulum actions. The aim of this study was to investigate the upper to lower limbs coordination dynamics of eight male elite front crawlers while increasing swimming speed and disturbing the aquatic environment (i.e., pool vs. flume). Upper to lower limb frequency ratios, coordination, coupling strength, and asymmetry were computed from data collected by inertial measurement units. Significant speed effect was observed, leading to transitions from 1∶1 to 1∶3 frequency ratios (1∶3 overrepresented), whereas 1∶2 frequency ratio was rarely used. Flume swimming led to a significant lower coupling strength at low speeds and higher asymmetries, especially at the highest speeds, probably related to the flume dynamic environment.

Guignard, Chollet, and Seifert are with Center for the Study and the Transformation of Physical Activities (CETAPS), Faculty of Sport Sciences, University of Rouen Normandy, UNIROUEN, Mont-Saint-Aignan, France. Guignard and Rouard are with Interuniversity Biology and Motricity Laboratory (LIBM), University Savoie Mont Blanc, Chambéry, France. Bonifazi is with the Department of Medicine, Surgery, and NeuroScience, University of Siena, Siena, Italy. Dalla Vedova is with Sport Science Department, Medicine and Science Sport Institute, Italian National Olympic Committee (CONI), Rome, Italy. Hart is with the Center for Sports Engineering Research, Sheffield Hallam University, Sheffield, United Kingdom.

Guignard (brice.guignard@univ-rouen.fr) is corresponding author.
Motor Control
Article Sections
References
  • AndersenJ.T. & SandersR.H. (2018). A systematic review of propulsion from the flutter kick—What can we learn from the dolphin kick? Journal of Sports Sciences 36(18) 20682075. PubMed ID: 29431581 doi:10.1080/02640414.2018.1436189

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AraújoD.DavidsK. & BennettS.J. (2004). Emergence of sport skills under constraints. In A.M. Williams& N.J. Hodges (Eds.) Skill acquisition in sport: Research theory and practice (pp. 409433). London, UK: Taylor & Francis.

    • Search Google Scholar
    • Export Citation
  • AraújoD.DavidsK. & HristovskiR. (2006). The ecological dynamics of decision making in sport. Psychology of Sport and Exercise 7(6) 653676. doi:10.1016/j.psychsport.2006.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BarelaJ.A.WhitallJ.BlackP. & ClarkJ.E. (2000). An examination of constraints affecting the intralimb coordination of hemiparetic gait. Human Movement Science 19(2) 251273. doi:10.1016/S0167-9457(00)00014-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CohenJ. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, MI: Lawrence Erlbaum Associates.

  • CostillD.L.MaglischoE.W. & RichardsonA.B. (1992). Swimming. Oxford, UK: Blackwell Science Publications.

  • DadashiF.CrettenandF.MilletG.P.SeifertL.M.KomarJ. & AminianK. (2013). Automatic front-crawl temporal phase detection using adaptive filtering of inertial signals. Journal of Sports Sciences 31(11) 12511260. PubMed ID: 23560703 doi:10.1080/02640414.2013.778420

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DadashiF.MilletG.P. & AminianK. (2013). Inertial measurement unit and biomechanical analysis of swimming: An update. Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie 61(3) 2833.

    • Search Google Scholar
    • Export Citation
  • DavidsK.AraújoD.HristovskiR.PassosP. & ChowJ.Y. (2012). Ecological dynamics and motor learning design in sport. In N.J. Hodges& A.M. Williams (Eds.) Skill acquisition in sport: Research theory and practice (pp. 112130). New York, NY: Routledge.

    • Search Google Scholar
    • Export Citation
  • DeschodtV.J.ArsacL.M. & RouardA.H. (1999). Relative contribution of arms and legs in humans to propulsion in 25-m sprint front-crawl swimming. European Journal of Applied Physiology and Occupational Physiology 80(3) 192199. PubMed ID: 10453920 doi:10.1007/s004210050581

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DonkerS.F.BeekP.J.WagenaarR.C. & MulderT. (2001). Coordination between arm and leg movements during locomotion. Journal of Motor Behavior 33(1) 86102. PubMed ID: 11303522 doi:10.1080/00222890109601905

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EbertD.RasslerB. & HefterH. (2000). Coordination between breathing and forearm movements during sinusoidal tracking. European Journal of Applied Physiology 81(4) 288296. PubMed ID: 10664087 doi:10.1007/s004210050045

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EspinosaH.G.NordsborgN.B. & ThielD.V. (2015). Front crawl swimming analysis using accelerometers: A preliminary comparison between pool and flume. Procedia Engineering 112497501. doi:10.1016/j.proeng.2015.07.231

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FieldA. (2013). Discovering statistics using IBM SPSS Statistics. Los Angeles, CA: Sage.

  • GourgoulisV.BoliA.AggeloussisN.ToubekisA.AntoniouP.KasimatisP. . . . MavromatisG. (2014). The effect of leg kick on sprint front crawl swimming. Journal of Sports Sciences 32(3) 278289. PubMed ID: 24016316 doi:10.1080/02640414.2013.823224

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GuignardB.RouardA.CholletD.AyadO.BonifaziM.Dalla VedovaD. & SeifertL. (2017). Perception and action in swimming: Effects of aquatic environment on upper limb inter-segmental coordination. Human Movement Science 55240254. PubMed ID: 28846856 doi:10.1016/j.humov.2017.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HerzogW.NiggB.M.ReadL.J. & OlssonE. (1989). Asymmetries in ground reaction force patterns in normal human gait. Medicine & Science in Sports & Exercise 21(1) 110114. PubMed ID: 2927295 doi:10.1249/00005768-198902000-00020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HoffmannC.P. & BardyB.G. (2015). Dynamics of the locomotor-respiratory coupling at different frequencies. Experimental Brain Research 233(5) 15511561. PubMed ID: 25796188 doi:10.1007/s00221-015-4229-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HoffmannC.P.TorregrosaG. & BardyB.G. (2012). Sound stabilizes locomotor-respiratory coupling and reduces energy cost. PLoS ONE 7(9) 45206. PubMed ID: 23028849 doi:10.1371/journal.pone.0045206

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HueO.BenaventeH. & CholletD. (2003). The effect of wet suit use by triathletes: An analysis of the different phases of arm movement. Journal of Sports Sciences 21(12) 10251030. PubMed ID: 14748460 doi:10.1080/0264041031000140419

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JekaJ.J. & KelsoJ.A.S. (1989). The dynamic pattern approach to coordinated behavior: A tutorial review. In S.A. Wallace (Ed.) Perspectives on the coordination of movement (pp. 345). North Holland, The Netherlands: Elsevier Science Publishers B.V.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KaramanidisK.ArampatzisA. & BrüggemannG.-P. (2003). Symmetry and reproducibility of kinematic parameters during various running techniques. Medicine & Science in Sports & Exercise 35(6) 10091016. PubMed ID: 12783050 doi:10.1249/01.MSS.0000069337.49567.F0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KelsoJ.A.S. & EngströmD.A. (2006). The complementary nature. Cambridge, MA: MIT Press.

  • KurzM.J. & StergiouN. (2002). Effect of normalization and phase angle calculations on continuous relative phase. Journal of Biomechanics 35(3) 369374. PubMed ID: 11858813 doi:10.1016/S0021-9290(01)00211-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MadgwickS.O.H.HarrisonA.J.L. & VaidyanathanA. (2011). Estimation of IMU and MARG orientation using a gradient descent algorithm. IEEE International Conference on Rehabilitation Robotics 1179185.

    • Search Google Scholar
    • Export Citation
  • MaglischoE.W. (2003). Swimming fastest. Champaign, IL: Human Kinetics.

  • McDermottW.J.Van EmmerikR.E.A. & HamillJ. (2003). Running training and adaptive strategies of locomotor-respiratory coordination. European Journal of Applied Physiology 89(5) 435444. PubMed ID: 12712351 doi:10.1007/s00421-003-0831-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGibbonK.E.PyneD.B.ShephardM.E. & ThompsonK.G. (2018). Pacing in swimming: A systematic review. Sports Medicine 48(7) 16211633. PubMed ID: 29560605 doi:10.1007/s40279-018-0901-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MerayoJ.BrauerP.PrimdahlF.PetersenJ.R. & NielsenO.V. (2000). Scalar calibration of vector magnetometers. Measurement Science and Technology 11(2) 120132. doi:10.1088/0957-0233/11/2/304

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MilletG.P.CholletD.ChaliesS. & ChatardJ.C. (2002). Coordination in front crawl in elite triathletes and elite swimmers. International Journal of Sports Medicine 2399104. PubMed ID: 11842356 doi:10.1055/s-2002-20126

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MonteilK.M. (1992). Analyse biomécanique du nageur de crawl lors d’un test conduisant à épuisement: étude des paramètres cinématiques cinétiques et électromyographiques [Biomechanical analysis of front crawl swimmer during exhausting test: Study about kinematic kinetic and electromyographic parameters] (Unpublished PhD thesis). Université Claude Bernard Lyon ILyon, France.

    • Search Google Scholar
    • Export Citation
  • NewellK.M. (1986). Constraints on the development of coordination. In M.G. Wade & H.T.A. Whiting (Eds.) Motor development in children: Aspects of coordination and control (pp. 341360). Boston, MA: Martinus Nijhoff Publishers.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’HalloranJ.HamillJ.McDermottW.J.RemeliusJ.G. & Van EmmerikR.E.A. (2012). Locomotor-respiratory coupling patterns and oxygen consumption during walking above and below preferred stride frequency. European Journal of Applied Physiology and Occupational Physiology 112(3) 929940. doi:10.1007/s00421-011-2040-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OsboroughC.DalyD. & PaytonC.J. (2015). Effect of swim speed on leg-to-arm coordination in unilateral arm amputee front crawl swimmers. Journal of Sports Sciences 33(14) 15231531. PubMed ID: 25562689 doi:10.1080/02640414.2014.996181

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PeperC.E.BeekP.J. & van WieringenP.C.W. (1995). Multifrequency coordination in bimanual tapping: Asymmetrical coupling and signs of supercriticality. Journal of Experimental Psychology: Human Perception and Performance 21(5) 11171138.

    • Search Google Scholar
    • Export Citation
  • RobinsonR.O.HerzogW. & NiggB.M. (1987). Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. Journal of Manipulative and Physiological Therapeutics 10(4) 172176. PubMed ID: 2958572

    • Search Google Scholar
    • Export Citation
  • SeifertL.ButtonC. & DavidsK. (2013). Key properties of expert movement systems in sport. Sports Medicine 43(3) 167178. PubMed ID: 23329604 doi:10.1007/s40279-012-0011-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SeifertL.ChehensseA.Tourny-CholletC.LemaitreF. & CholletD. (2008). Effect of breathing pattern on arm coordination symmetry in front crawl. Journal of Strength and Conditioning Research 22(5) 16701676. PubMed ID: 18714216 doi:10.1519/JSC.0b013e318182029d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SeifertL.CholletD. & AllardP. (2005). Arm coordination symmetry and breathing effect in front crawl. Human Movement Science 24(2) 234256. PubMed ID: 15964648 doi:10.1016/j.humov.2005.05.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SeifertL.DelignièresD.BoulesteixL. & CholletD. (2007). Effect of expertise on butterfly stroke coordination. Journal of Sports Sciences 25(2) 131141. PubMed ID: 17127588 doi:10.1080/02640410600598471

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SerrienD.J. & SwinnenS.P. (1997). Coordination constraints induced by effector combination under isofrequency and multifrequency conditions. Journal of Experimental Psychology: Human Perception and Performance 23(5) 14931510.

    • Search Google Scholar
    • Export Citation
  • SilveiraR.P.de Souza CastroF.A.FigueiredoP.Vilas-BoasJ.P. & ZamparoP. (2017). The effects of leg kick on swimming speed and arm-stroke efficiency in the front crawl. International Journal of Sports Physiology and Performance 12(6) 728735. PubMed ID: 27736243 doi:10.1123/ijspp.2016-0232

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TreffnerP.J. & TurveyM.T. (1993). Resonance constraints on rhythmic movement. Journal of Experimental Psychology: Human Perception and Performance 19(6) 12211237.

    • Search Google Scholar
    • Export Citation
  • van EmmerikR.E. & WagenaarR.C. (1996). Effects of walking velocity on relative phase dynamics in the trunk in human walking. Journal of Biomechanics 29(9) 11751184. PubMed ID: 8872274 doi:10.1016/0021-9290(95)00128-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von HolstE. (1939). Relative coordination as a phenomenon and as a method of analysis of central nervous system function. Ergebnisse der Physiologie Biologischen Chemie und Experimentellen Pharmakologie 42(1) 228306. doi:10.1007/BF02322567

    • Search Google Scholar
    • Export Citation
  • von HolstE. (1973). The behavioural physiology of animals and man. Coral Gables, FL: University of Miami Press.

  • VorontsovA. & RumyantsevV.A. (2000). Resistive forces in swimming. In V.M. Zatsiorsky (Ed.) Biomechanics in sports: Performance enhancement and injury prevention (pp. 184204). Oxford, UK: Blackwell Science Ltd.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WagenaarR.C. & van EmmerikR.E.A. (1994). Dynamics of pathological gait. Human Movement Science 13(3–4) 441471. doi:10.1016/0167-9457(94)90049-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WagenaarR.C. & van EmmerikR.E.A. (2000). Resonant frequencies of arms and legs identify different walking patterns. Journal of Biomechanics 33(7) 853861. PubMed ID: 10831760 doi:10.1016/S0021-9290(00)00020-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WannierT.BastiaanseC.ColomboG. & DietzV. (2001). Arm to leg coordination in humans during walking, creeping and swimming activities. Experimental Brain Research 141375379. PubMed ID: 11715082 doi:10.1007/s002210100875

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WatkinsJ. & GordonA.T. (1983). The effects of leg action on performance in the sprint front crawl stroke. In A.P. HollanderP.A. Huijing & G. de Groot (Eds.) Swimming science IV (pp. 310314). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • WilsonB.D.TakagiH. & PeaseD.L. (1998). Technique comparison of pool and flume swimming. In K.L. KeskinenP.V. Komi & A.P. Hollander (Eds.) VIII International symposium of biomechanics and medicine in swimming (pp. 181184). Jyväskylä, Finland: University of Jyväskylä.

    • Search Google Scholar
    • Export Citation
  • WinterD.A. (1990). Biomechanics and motor control of human movement. Chichester, UK: John Wiley & Sons.

  • WinterE.M.EstonR.G. & LambK.L. (2001). Statistical analyses in the physiology of exercise and kinanthropometry. Journal of Sports Sciences 19(10) 761775. PubMed ID: 11561673 doi:10.1080/026404101317015429

    • Crossref
    • Search Google Scholar
    • Export Citation
  • YanaiT. (2003). Stroke frequency in front crawl: Its mechanical link to the fluid forces required in non-propulsive directions. Journal of Biomechanics 36(1) 5362. PubMed ID: 12485638 doi:10.1016/S0021-9290(02)00299-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZamparoP.PendergastD.R.TerminB. & MinettiA.E. (2002). How fins affect the economy and efficiency of human swimming. The Journal of Experimental Biology 205(17) 26652676.

    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 82 82 33
Full Text Views 3 3 2
PDF Downloads 2 2 1
Altmetric Badge
PubMed
Google Scholar