Frequency Distributions of Target-Directed Movements: Examining Spatial Variability in Its Wider Context

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

Investigations of visually guided target-directed movement frequently adopt measures of within-participant spatial variability to infer the contribution of planning and control. The present study aims to verify this current trend by exploring the distribution of displacements at kinematic landmarks with a view to understand the potential sources of variability. Separate sets of participants aiming under full visual feedback conditions revealed a comparatively normal distribution for the displacements at peak velocity and movement end. However, there was demonstrable positive skew in the displacement at peak acceleration and a significant negative skew at peak deceleration. The ranges of the distributions as defined by either ±1SD or ±34.13th percentile (equivalent to an estimated 68.26% of responses) also revealed differences at peak deceleration. These findings indicate that spatial variability in the acceleration domain features highly informative systematic, as well as merely inherent, sources of variability. Implications for the further quantification of trial-by-trial behavior are discussed.

The author is with the School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom.

Roberts (robertj3@hope.ac.uk) is corresponding author.
Motor Control
Article Sections
References
  • AllsopJ.E.LawrenceG.P.GrayR. & KhanM.A. (2016). The interaction between practice and performance pressure on the planning and control of fast target directed movement. Psychological Research 81(5) 10041019. PubMed ID: 27535064 doi:10.1007/s00426-016-0791-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BurkittJ.J.StaiteV.YeungA.ElliottD. & LyonsJ.L. (2015). Effector mass and trajectory optimization in the online regulation of goal-directed movement. Experimental Brain Research 233(4) 10971107. PubMed ID: 25567091 doi:10.1007/s00221-014-4191-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChengD.T.LuisM. & TremblayL. (2008). Randomizing visual feedback in manual aiming: Reminiscence of the previous trial condition and prior knowledge of feedback availability. Experimental Brain Research 189(4) 403410. PubMed ID: 18560814 doi:10.1007/s00221-008-1436-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ElliottD.CarsonR.G.GoodmanD. & ChuaR. (1991). Discrete vs. continuous visual control of manual aiming. Human Movement Science 10393418. doi:10.1016/0167-9457(91)90013-N

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ElliottD.HansenS.MendozaJ. & TremblayL. (2004). Learning to optimize speed, accuracy, and energy expenditure: A framework for understanding speed-accuracy relations in goal-directed aiming. Journal Motor Behavior 36(3) 339351. doi:10.3200/JMBR.36.3.339-351

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ElliottD.HelsenW.F. & ChuaR. (2001). A century later: Woodworth’s (1899) two-component model of goal-directed aiming. Psychological Bulletin 127(3) 342357. PubMed ID: 11393300 doi:10.1037/0033-2909.127.3.342

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FaisalA.A.SelenL.P.J. & WolpertD.M. (2008). Noise in the nervous system. Nature Reviews Neuroscience 9292303. PubMed ID: 18319728 doi:10.1038/nrn2258

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FittsP.M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47(6) 381391. PubMed ID: 13174710 doi:10.1037/h0055392

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FittsP.M. & PetersonJ.R. (1964). Information capacity of discrete motor responses. Journal of Experimental Psychology 67(2) 103112. doi:10.1037/h0045689

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GriersonL.E.M. & ElliottD. (2008). Kinematic analysis of goal-directed aims made against early and late perturbations: An investigation of the relative influence of two online control processes. Human Movement Science 27(6) 839856. doi:10.1016/j.humov.2008.06.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GriersonL.E.M.LyonsJ. & ElliottD. (2011). The impact of real and illusory perturbations on the early trajectory adjustments of goal-directed movements. Journal of Motor Behavior 43(5) 383391. PubMed ID: 21861628 doi:10.1080/00222895.2011.606441

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HansenS.ElliottD. & KhanM.A. (2008). Quantifying the variability of three-dimensional aiming movements using ellipsoids. Motor Control 12(3) 241251. PubMed ID: 18698108 doi:10.1123/mcj.12.3.241

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HansenS.TremblayL. & ElliottD. (2005). Part and whole practice: Chunking and online control in the acquisition of a serial motor task. Research Quarterly for Exercise and Sport 76(1) 6066. PubMed ID: 15810771 doi:10.1080/02701367.2005.10599262

    • Search Google Scholar
    • Export Citation
  • JosephM.E.KingA.C. & NewellK.M. (2013). Task difficulty and the time scales of warm-up and motor learning. Journal of Motor Behavior 45(13) 231238. PubMed ID: 23611248 doi:10.1080/00222895.2013.784240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KhanM.A. & BinstedG. (2010). Visual field asymmetries in the control of target-directed movements. In D. Elliott & M.A. Khan (Eds.) Vision and goal-directed movement: Neurobehavioural perspectives (pp. 133145). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • KhanM.A.ElliottD.CoullJ.ChuaR. & LyonsJ. (2002). Optimal control strategies under different feedback schedules: Kinematic evidence. Journal of Motor Behavior 34(1) 4557. PubMed ID: 11880249 doi:10.1080/00222890209601930

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KhanM.A. & FranksI.M. (2003). Online versus offline processing of visual feedback in the production of component submovements. Journal of Motor Behavior 35(3) 285295. doi:10.1080/00222890309602141

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KhanM.A.FranksI.M.ElliottD.LawrenceG.P.ChuaR.BernierP. . . . WeeksD.J. (2006). Inferring online and offline processing of visual feedback in target-directed movements from kinematic data. Neuroscience & Behavioral Reviews 3011061121. doi:10.1016/j.neubiorev.2006.05.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KhanM.A.LawrenceG.FourkasA.FranksI.M.ElliottD. & PembrokeS. (2003). Online versus offline processing of visual feedback in the control of movement amplitude. Acta Psychologica 113(1) 8397. PubMed ID: 12679045 doi:10.1016/S0001-6918(02)00156-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LyonsJ.HansenS.HurdingS. & ElliottD. (2006). Optimizing rapid aiming behaviour: Movement kinematics depend on the cost of corrective modifications. Experimental Brain Research 174(1) 95100. PubMed ID: 16575577 doi:10.1007/s00221-006-0426-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MeyerD.E.AbramsR.A.KornblumS.WrightC.E. & SmithJ.E. (1988). Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review 95(3) 340370. doi:10.1037/0033-295X.95.3.340

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OliveiraF.T.P.ElliottD. & GoodmanD. (2005). Energy-minimization bias: Compensating for intrinsic influence of energy-minimization mechanisms. Motor Control 9(1) 101114. PubMed ID: 15784952 doi:10.1123/mcj.9.1.101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RabbittP.M.A. (1981). Sequential action. In D.H. Holding (Ed.) Human skill (pp. 147170). London, UK: Wiley.

  • RobertsJ.W.BurkittJ.J.ElliottD. & LyonsJ.L. (2016). The impact of strategic trajectory optimization on illusory target biases during goal-directed aiming. Journal of Motor Behavior 48(6) 542551. PubMed ID: 27362494 doi:10.1080/00222895.2016.1161588

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RobertsJ.W.ElliottD.LyonsJ.L.HayesS.J. & BennettS.J. (2016). Common vs. independent limb control in sequential vertical aiming: The cost of potential errors during extension and reversals. Acta Psychologica 1632737. PubMed ID: 26590702 doi:10.1016/j.actpsy.2015.10.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RobertsJ.W.WilsonM.R.SkultetyJ. & LyonsJ.L. (2018). Examining the effect of state anxiety on compensatory and strategic adjustments in the planning of goal-directed aiming. Acta Psychologica 1853340. PubMed ID: 29407243 doi:10.1016/j.actpsy.2018.01.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchmidtR.A.ZelaznikH.N.HawkinsB.FrankJ.S. & QuinnJ.T. (1979). Motor output variability: A theory for the accuracy of rapid motor acts. Psychological Review 86(5) 415451. doi:10.1037/0033-295X.86.5.415

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SheaJ.B. & MorganR.L. (1979). Contextual interference effects on the acquisition, retention, and transfer of a motor skill. Journal of Experimental Psychology: Human Learning and Memory 5(2) 179187. doi:10.1037/0278-7393.5.2.179

    • Search Google Scholar
    • Export Citation
  • van BeersR.J. (2009). Motor learning is optimally tuned to the properties of motor noise. Neuron 63(3) 406417. PubMed ID: 19679079 doi:10.1016/j.neuron.2009.06.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van BeersR.J.HaggardP. & WolpertD.M. (2004). The role of execution noise in movement variability. Journal of Neurophysiology 9110501063. PubMed ID: 14561687 doi:10.1152/jn.00652.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WelfordA.T. (1968). Fundamentals of skill. New York, NY: Methuen.

  • WolpertD.M. & FlanaganJ.R. (2010). Motor learning. Current Biology 20(11) R468. doi:10.1016/j.cub.2010.04.035

  • WoodworthR.S. (1899). The accuracy of voluntary movement. The Psychological Review: Monograph Supplements 3(3) 1114.

  • WorringhamC.J. (1991). Variability effects on the internal structure of rapid aiming movements. Journal of Motor Behavior 23(1) 7585. PubMed ID: 14766533 doi:10.1080/00222895.1991.9941595

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 39 39 20
Full Text Views 5 5 3
PDF Downloads 3 3 1
Altmetric Badge
PubMed
Google Scholar