Brain Activation Changes During Balance- and Attention-Demanding Tasks in Middle- and Older-Aged Adults With Multiple Sclerosis

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

Functional near-infrared spectroscopy was used to evaluate prefrontal cortex activation differences between older adults with multiple sclerosis (MS) and healthy older adults (HOA) during the performance of a balance- and attention-demanding motor task. Ten older adults with MS and 12 HOA underwent functional near-infrared spectroscopy recording while talking, virtual beam walking, or virtual beam walking while talking on a self-paced treadmill. The MS group demonstrated smaller increases in prefrontal cortex oxygenation levels than HOA during virtual beam walking while talking than talking tasks. These findings indicate a decreased ability to allocate additional attentional resources in challenging walking conditions among MS compared with HOA. This study is the first to investigate brain activation dynamics during the performance of balance- and attention-demanding motor tasks in persons with MS.

Hernandez, O’Donnell, and Chaparro are with the University of Illinois at Urbana-Champaign, Urbana, IL. Holtzer is with the Albert Einstein College of Medicine, Yeshiva University, Bronx, NY. Izzetoglu is with Villanova University, Villanova, PA. Sandroff and Motl are with The University of Alabama at Birmingham, Birmingham, AL.

Hernandez (mhernand@illinois.edu) is corresponding author.
Motor Control
Article Sections
References
  • AudoinB.Au DuongM.V.RanjevaJ.P.IbarrolaD.MalikovaI.Confort-GounyS. . . . CozzoneP.J. (2005). Magnetic resonance study of the influence of tissue damage and cortical reorganization on PASAT performance at the earliest stage of multiple sclerosis. Human Brain Mapping 24216228. doi:10.1002/hbm.20083

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BatesD.MachlerM.BolkerB. & WalkerS. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67148. doi:10.18637/jss.v067.i01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BenedictR.H.HoltzerR.MotlR.W.FoleyF.W.KaurS.HojnackiD. & Weinstock-GuttmanB. (2011). Upper and lower extremity motor function and cognitive impairment in multiple sclerosis. Journal of the International Neuropsychological Society 17643653. doi:10.1017/S1355617711000403

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BillingtonJ.FieldD.T.WilkieR.M. & WannJ.P. (2010). An fMRI study of parietal cortex involvement in the visual guidance of locomotion. Journal of Experimental Psychology: Human Perception and Performance 3614951507. doi:10.1037/a0018728

    • Search Google Scholar
    • Export Citation
  • BoasD.FranceschiniM.DunnA. & StrangmanG. (2002). Noninvasive imaging of cerebral activation with diffuse optical imaging. R. Frostig (Ed.) In-vivo optical imaging of brain function (pp. 193222). Boca Raton, FL: CRC Press.

    • Search Google Scholar
    • Export Citation
  • ChaparroG.BaltoJ.M.SandroffB.M.HoltzerR.IzzetogluM.MotlR.W. . . . HernandezM.E. (2017). Frontal brain activation changes due to dual-tasking under partial body weight support conditions in older adults with multiple sclerosis. Journal of Neuroengineering and Rehabilitation 1465. doi:10.1186/s12984-017-0280-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ClarkD.J. (2015). Automaticity of walking: Functional significance, mechanisms, measurement and rehabilitation strategies. Frontiers in Human Neuroscience 9246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeLucaJ.CheluneG.J.TulskyD.S.LengenfelderJ. & ChiaravallotiN.D. (2004). Is speed of processing or working memory the primary information processing deficit in multiple sclerosis? Journal of Clinical and Experimental Neuropsychology 26550562. doi:10.1080/13803390490496641

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DoiT.MakizakoH.ShimadaH.ParkH.TsutsumimotoK.UemuraK. & SuzukiT. (2013). Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: A fNIRS study. Aging Clinical and Experimental Research 25539544. doi:10.1007/s40520-013-0119-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DownerM.B.KirklandM.C.WallackE.M. & PloughmanM. (2016). Walking impairs cognitive performance among people with multiple sclerosis but not controls. Human Movement Science 49124131. doi:10.1016/j.humov.2016.06.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FeldmanA.G. (1986). Once more on the equilibrium-point hypothesis (lambda model) for motor control. Journal of Motor Behavior 18(1) 1754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FeldmanA.G.GoussevV.SangoleA. & LevinM.F. (2007). Threshold position control and the principle of minimal interaction in motor actions. Progress in Brain Research 165267281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FukuyamaH.OuchiY.MatsuzakiS.NagahamaY.YamauchiH.OgawaM. . . . ShibasakiH. (1997). Brain functional activity during gait in normal subjects: A SPECT study. Neuroscience Letters 228183186. PubMed ID: 9218638 doi:10.1016/S0304-3940(97)00381-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GivonU.ZeiligG. & AchironA. (2009). Gait analysis in multiple sclerosis: Characterization of temporal-spatial parameters using GAITRite functional ambulation system. Gait Posture 29138142. PubMed ID: 18951800 doi:10.1016/j.gaitpost.2008.07.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HamiltonF.RochesterL.PaulL.RaffertyD.O’LearyC.P. & EvansJ.J. (2009). Walking and talking: An investigation of cognitive-motor dual tasking in multiple sclerosis. Multiple Sclerosis 1512151227. doi:10.1177/1352458509106712

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HawkinsK.A.FoxE.J.DalyJ.J.RoseD.K.ChristouE.A.McGuirkT.E. . . . ClarkD.J. (2018). Prefrontal over-activation during walking in people with mobility deficits: Interpretation and functional implications. Human Movement Science 594655. doi:10.1016/j.humov.2018.03.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HernandezM.E.HoltzerR.ChaparroG.JeanK.BaltoJ.M.SandroffB.M. . . . MotlR.W. (2016). Brain activation changes during locomotion in middle-aged to older adults with multiple sclerosis. Journal of the Neurological Sciences 370277283. doi:10.1016/j.jns.2016.10.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HoltzerR.GeorgeC.J.IzzetogluM. & WangC. (2018). The effect of diabetes on prefrontal cortex activation patterns during active walking in older adults. Brain and Cognition 1251422. PubMed ID: 29807266 doi:10.1016/j.bandc.2018.03.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HoltzerR.IzzetogluM.ChenM. & WangC. (2018). Distinct fNIRS-derived HbO2 trajectories during the course and over repeated walking trials under single and dual-task conditions: Implications for within session learning and prefrontal cortex efficiency in older adults. The Journals of Gerontology Series A: Biological Sciences & Medical Sciences. XX 18. PubMed ID: 30107534 doi:10.1093/gerona/gly181

    • Search Google Scholar
    • Export Citation
  • HoltzerR.MahoneyJ.R.IzzetogluM.IzzetogluK.OnaralB. & VergheseJ. (2011). fNIRS study of walking and walking while talking in young and old individuals. The Journals of Gerontology Series A: Biological Sciences & Medical Sciences 66879887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HoltzerR.VergheseJ.XueX. & LiptonR.B. (2006). Cognitive processes related to gait velocity: Results from the Einstein Aging Study. Neuropsychology 20215223. PubMed ID: 16594782 doi:10.1037/0894-4105.20.2.215

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HubbardE.A.WetterN.C.SuttonB.P.PiluttiL.A. & MotlR.W. (2016). Diffusion tensor imaging of the corticospinal tract and walking performance in multiple sclerosis. Journal of the Neurological Scienecs 363225231. doi:10.1016/j.jns.2016.02.044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IzzetogluM.ChitrapuP.BunceS. & OnaralB. (2010). Motion artifact cancellation in NIR spectroscopy using discrete Kalman filtering. Biomedical Engineering Online 916. doi:10.1186/1475-925X-9-16

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KosticM.StojanovivI.MarjanovicG.ZivkovicN. & CvetanovicA. (2015). Deleterious versus protective autoimmunity in multiple sclerosis Cellular Immunology 296(2) 122132. doi:10.1016/j.cellimm.2015.04.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KurtzkeJ.F. (1983). Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 3314441452. PubMed ID: 6685237 doi:10.1212/WNL.33.11.1444

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaroccaN.G. (2011). Impact of walking impairment in multiple sclerosis: Perspectives of patients and care partners. Patient 4189201. PubMed ID: 21766914 doi:10.2165/11591150-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LatashM.L.LevinM.F.ScholzJ.P. & SchonerG. (2010). Motor control theories and their applications. Medicina 46 (6) 382392. doi:10.3390/medicina46060054

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LearmonthY.C.EnsariI. & MotlR.W. (2016). Cognitive motor interference in multiple sclerosis: Insights from a systematic, quantitative review. Archives of Physical Medicine and Rehabilitation 9812291240. doi:10.1016/j.apmr.2016.07.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeoneC.PattiF. & FeysP. (2015). Measuring the cost of cognitive-motor dual tasking during walking in multiple sclerosis. Multiple Sclerosis 21123131. doi:10.1177/1352458514547408

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LevinM.F. (2000). Sensorimotor deficits in patients with central nervous system lesions: Explanations based on the λ model of motor control. Human Movement Science 19(1) 107137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LoitfelderM.FazekasF.KoschutnigK.FuchsS.PetrovicK.RopeleS. . . . EnzingerC. (2014). Brain activity changes in cognitive networks in relapsing-remitting multiple sclerosis—Insights from a longitudinal fMRI study. PLoS ONE 9e93715. PubMed ID: 24718105 doi:10.1371/journal.pone.0093715

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MalcolmB.R.FoxeJ.J.ButlerJ.S. & De SanctisP. (2015). The aging brain shows less flexible reallocation of cognitive resources during dual-task walking: A mobile brain/body imaging (MoBI) study. NeuroImage 117230242. PubMed ID: 25988225 doi:10.1016/j.neuroimage.2015.05.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MarrieR.A.YuN.BlanchardJ.LeungS. & ElliottL. (2010). The rising prevalence and changing age distribution of multiple sclerosis in Manitoba. Neurology 74465471. PubMed ID: 20071664 doi:10.1212/WNL.0b013e3181cf6ec0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MiharaM.MiyaiI.HatakenakaM.KubotaK. & SakodaS. (2008). Role of the prefrontal cortex in human balance control. NeuroImage 43329336. PubMed ID: 18718542 doi:10.1016/j.neuroimage.2008.07.029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MiyaiI.TanabeH.C.SaseI.EdaH.OdaI.KonishiI. . . . KubotaK. (2001). Cortical mapping of gait in humans: A near-infrared spectroscopic topography study. NeuroImage 1411861192. PubMed ID: 11697950 doi:10.1006/nimg.2001.0905

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MoonY.SungJ.AnR.HernandezM.E. & SosnoffJ.J. (2016). Gait variability in people with neurological disorders: A systematic review and meta-analysis. Human Movement Science 47197208. doi:10.1016/j.humov.2016.03.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MotlR.W. (2013). Ambulation and multiple sclerosis. Physical Medicine & Rehabilitation Clinics of North America 24325336. doi:10.1016/j.pmr.2012.11.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NebelK.WieseH.SeyfarthJ.GizewskiE.R.StudeP.DienerH.C. & LimmrothV. (2007). Activity of attention related structures in multiple sclerosis patients. Brain Research 1151150160. PubMed ID: 17397807 doi:10.1016/j.brainres.2007.03.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NoseworthyJ.H.LucchinettiC.RodriguezM. & WeinshenkerB.G. (2000). Multiple sclerosis. The New England Journal of Medicine 343938952. doi:10.1056/NEJM200009283431307

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OhsugiH.OhgiS.ShigemoriK. & SchneiderE.B. (2013). Differences in dual-task performance and prefrontal cortex activation between younger and older adults. BMC Neuroscience 1410. PubMed ID: 23327197 doi:10.1186/1471-2202-14-10

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

  • Reuter-LorenzP.A.JonidesJ.SmithE.E.HartleyA.MillerA.MarshuetzC. . . . KoeppeR.A. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience 12174187. doi:10.1162/089892900561814

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SanaiS.A.SainiV.BenedictR.H.ZivadinovR.TeterB.E.RamanathanM. & Weinstock-GuttmanB. (2016). Aging and multiple sclerosis. Multiple Sclerosis 22717725. doi:10.1177/1352458516634871

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SbardellaE.PetsasN.TonaF.ProsperiniL.RazE.PaceG. & PantanoP. (2013). Assessing the correlation between grey and white matter damage with motor and cognitive impairment in multiple sclerosis patients. PLoS ONE 8e63250. PubMed ID: 23696802 doi:10.1371/journal.pone.0063250

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SeidlerR.D.BernardJ.A.BurutoluT.B.FlingB.W.GordonM.T.GwinJ.T. . . . LippsD.B. (2010). Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neuroscience & Biobehavioral Reviews 34721733. doi:10.1016/j.neubiorev.2009.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SosnoffJ.J.BoesM.K.SandroffB.M.SocieM.J.PulaJ.H. & MotlR.W. (2011). Walking and thinking in persons with multiple sclerosis who vary in disability. Archives of Physical Medicine and Rehabilitation 9220282033. doi:10.1016/j.apmr.2011.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StaffenW.MairA.ZaunerH.UnterrainerJ.NiederhoferH.KutzelniggA. . . . LadurnerG. (2002). Cognitive function and fMRI in patients with multiple sclerosis: Evidence for compensatory cortical activation during an attention task. Brain 12512751282. PubMed ID: 12023316 doi:10.1093/brain/awf125

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StellmannJ.P.VettorazziE.PoettgenJ. & HeesenC. (2014). A 3 meter timed tandem walk is an early marker of motor and cerebellar impairment in fully ambulatory MS patients. Journal of Neurological Sciences 34699106. doi:10.1016/j.jns.2014.08.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SternY. (2009). Cognitive reserve. Neuropsychologia 4720152028. PubMed ID: 19467352 doi:10.1016/j.neuropsychologia.2009.03.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stojanovic-RadicJ.WylieG.VoelbelG.ChiaravallotiN. & DeLucaJ. (2014). Neuroimaging and cognition using functional near infrared spectroscopy (fNIRS) in multiple sclerosis. Brain Imaging and Behavior 9302311. doi:10.1007/s11682-014-9307-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SuzukiM.MiyaiI.OnoT.OdaI.KonishiI.KochiyamaT. & KubotaK. (2004). Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: An optical imaging study. NeuroImage 2310201026. PubMed ID: 15528102 doi:10.1016/j.neuroimage.2004.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SzturmT.J.SakhalkarV.S.KanitkarA. & NankarM. (2017). Computerized dual-task testing of gait and visuospatial cognitive functions; test-retest reliability and validity. Frontiers in Human Neuroscience 11105. doi:10.3389/fnhum.2017.00105

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TakakusakiK. (2008). Forebrain control of locomotor behaviors. Brain Research Reviews 57192198. doi:10.1016/j.brainresrev.2007.06.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TakakusakiK. (2013). Neurophysiology of gait: From the spinal cord to the frontal lobe. Movement Disorders: Official Journal of the Movement Disorder Society 2814831491. doi:10.1002/mds.25669

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WajdaD.A.MotlR.W. & SosnoffJ.J. (2013). Dual task cost of walking is related to fall risk in persons with multiple sclerosis. Journal of Neurological Science 335160163. doi:10.1016/j.jns.2013.09.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WelshK.A.BreitnerJ.C.S. & Magruder-HabibK.M. (1993). Detection of dementia in the elderly using telephone screening of cognitive status. Neuropsychiatry Neuropsychology and Behavioral Neurology 6103110.

    • Search Google Scholar
    • Export Citation
  • Yogev-SeligmannG.HausdorffJ.M. & GiladiN. (2008). The role of executive function and attention in gait. Movement Disorders: Official Journal of the Movement Disorder Society 23329342. doi:10.1002/mds.21720

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZhouX.ChenC.ZhangH.XueG.DongQ.JinZ. . . . ChenC. (2006). Neural substrates for forward and backward recitation of numbers and the alphabet: A close examination of the role of intraparietal sulcus and perisylvian areas. Brain Research 1099109120. PubMed ID: 16784724 doi:10.1016/j.brainres.2006.01.133

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 57 57 46
Full Text Views 5 5 3
PDF Downloads 2 2 0
Altmetric Badge
PubMed
Google Scholar