Brain Activation Changes During Balance- and Attention-Demanding Tasks in Middle- and Older-Aged Adults With Multiple Sclerosis

in Motor Control

Click name to view affiliation

Manuel E. Hernandez University of Illinois at Urbana-Champaign

Search for other papers by Manuel E. Hernandez in
Current site
Google Scholar
PubMed
Close
*
,
Erin O’Donnell University of Illinois at Urbana-Champaign

Search for other papers by Erin O’Donnell in
Current site
Google Scholar
PubMed
Close
*
,
Gioella Chaparro University of Illinois at Urbana-Champaign

Search for other papers by Gioella Chaparro in
Current site
Google Scholar
PubMed
Close
*
,
Roee Holtzer Yeshiva University

Search for other papers by Roee Holtzer in
Current site
Google Scholar
PubMed
Close
*
,
Meltem Izzetoglu Villanova University

Search for other papers by Meltem Izzetoglu in
Current site
Google Scholar
PubMed
Close
*
,
Brian M. Sandroff The University of Alabama at Birmingham

Search for other papers by Brian M. Sandroff in
Current site
Google Scholar
PubMed
Close
*
, and
Robert W. Motl The University of Alabama at Birmingham

Search for other papers by Robert W. Motl in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Functional near-infrared spectroscopy was used to evaluate prefrontal cortex activation differences between older adults with multiple sclerosis (MS) and healthy older adults (HOA) during the performance of a balance- and attention-demanding motor task. Ten older adults with MS and 12 HOA underwent functional near-infrared spectroscopy recording while talking, virtual beam walking, or virtual beam walking while talking on a self-paced treadmill. The MS group demonstrated smaller increases in prefrontal cortex oxygenation levels than HOA during virtual beam walking while talking than talking tasks. These findings indicate a decreased ability to allocate additional attentional resources in challenging walking conditions among MS compared with HOA. This study is the first to investigate brain activation dynamics during the performance of balance- and attention-demanding motor tasks in persons with MS.

Hernandez, O’Donnell, and Chaparro are with the University of Illinois at Urbana-Champaign, Urbana, IL. Holtzer is with the Albert Einstein College of Medicine, Yeshiva University, Bronx, NY. Izzetoglu is with Villanova University, Villanova, PA. Sandroff and Motl are with The University of Alabama at Birmingham, Birmingham, AL.

Hernandez (mhernand@illinois.edu) is corresponding author.
  • Collapse
  • Expand
  • Audoin, B., Au Duong, M.V., Ranjeva, J.P., Ibarrola, D., Malikova, I., Confort-Gouny, S., . . . Cozzone, P.J. (2005). Magnetic resonance study of the influence of tissue damage and cortical reorganization on PASAT performance at the earliest stage of multiple sclerosis. Human Brain Mapping, 24, 216228. doi:10.1002/hbm.20083

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, D., Machler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 148. doi:10.18637/jss.v067.i01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, R.H., Holtzer, R., Motl, R.W., Foley, F.W., Kaur, S., Hojnacki, D., & Weinstock-Guttman, B. (2011). Upper and lower extremity motor function and cognitive impairment in multiple sclerosis. Journal of the International Neuropsychological Society, 17, 643653. doi:10.1017/S1355617711000403

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Billington, J., Field, D.T., Wilkie, R.M., & Wann, J.P. (2010). An fMRI study of parietal cortex involvement in the visual guidance of locomotion. Journal of Experimental Psychology: Human Perception and Performance, 36, 14951507. doi:10.1037/a0018728

    • Search Google Scholar
    • Export Citation
  • Boas, D., Franceschini, M., Dunn, A., & Strangman, G. (2002). Noninvasive imaging of cerebral activation with diffuse optical imaging. R. Frostig (Ed.), In-vivo optical imaging of brain function (pp. 193222). Boca Raton , FL: CRC Press.

    • Search Google Scholar
    • Export Citation
  • Chaparro, G., Balto, J.M., Sandroff, B.M., Holtzer, R., Izzetoglu, M., Motl, R.W., . . . Hernandez, M.E. (2017). Frontal brain activation changes due to dual-tasking under partial body weight support conditions in older adults with multiple sclerosis. Journal of Neuroengineering and Rehabilitation, 14, 65. doi:10.1186/s12984-017-0280-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, D.J. (2015). Automaticity of walking: Functional significance, mechanisms, measurement and rehabilitation strategies. Frontiers in Human Neuroscience, 9, 246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeLuca, J., Chelune, G.J., Tulsky, D.S., Lengenfelder, J., & Chiaravalloti, N.D. (2004). Is speed of processing or working memory the primary information processing deficit in multiple sclerosis? Journal of Clinical and Experimental Neuropsychology, 26, 550562. doi:10.1080/13803390490496641

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doi, T., Makizako, H., Shimada, H., Park, H., Tsutsumimoto, K., Uemura, K., & Suzuki, T. (2013). Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: A fNIRS study. Aging Clinical and Experimental Research, 25, 539544. doi:10.1007/s40520-013-0119-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downer, M.B., Kirkland, M.C., Wallack, E.M., & Ploughman, M. (2016). Walking impairs cognitive performance among people with multiple sclerosis but not controls. Human Movement Science, 49, 124131. doi:10.1016/j.humov.2016.06.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1986). Once more on the equilibrium-point hypothesis (lambda model) for motor control. Journal of Motor Behavior, 18(1), 1754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G., Goussev, V., Sangole, A., & Levin, M.F. (2007). Threshold position control and the principle of minimal interaction in motor actions. Progress in Brain Research, 165, 267281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukuyama, H., Ouchi, Y., Matsuzaki, S., Nagahama, Y., Yamauchi, H., Ogawa, M., . . . Shibasaki, H. (1997). Brain functional activity during gait in normal subjects: A SPECT study. Neuroscience Letters, 228, 183186. PubMed ID: 9218638 doi:10.1016/S0304-3940(97)00381-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Givon, U., Zeilig, G., & Achiron, A. (2009). Gait analysis in multiple sclerosis: Characterization of temporal-spatial parameters using GAITRite functional ambulation system. Gait Posture, 29, 138142. PubMed ID: 18951800 doi:10.1016/j.gaitpost.2008.07.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, F., Rochester, L., Paul, L., Rafferty, D., O’Leary, C.P., & Evans, J.J. (2009). Walking and talking: An investigation of cognitive-motor dual tasking in multiple sclerosis. Multiple Sclerosis, 15, 12151227. doi:10.1177/1352458509106712

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, K.A., Fox, E.J., Daly, J.J., Rose, D.K., Christou, E.A., McGuirk, T.E., . . . Clark, D.J. (2018). Prefrontal over-activation during walking in people with mobility deficits: Interpretation and functional implications. Human Movement Science, 59, 4655. doi:10.1016/j.humov.2018.03.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernandez, M.E., Holtzer, R., Chaparro, G., Jean, K., Balto, J.M., Sandroff, B.M., . . . Motl, R.W. (2016). Brain activation changes during locomotion in middle-aged to older adults with multiple sclerosis. Journal of the Neurological Sciences, 370, 277283. doi:10.1016/j.jns.2016.10.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtzer, R., George, C.J., Izzetoglu, M., & Wang, C. (2018). The effect of diabetes on prefrontal cortex activation patterns during active walking in older adults. Brain and Cognition, 125, 1422. PubMed ID: 29807266 doi:10.1016/j.bandc.2018.03.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtzer, R., Izzetoglu, M., Chen, M., & Wang, C. (2018). Distinct fNIRS-derived HbO2 trajectories during the course and over repeated walking trials under single and dual-task conditions: Implications for within session learning and prefrontal cortex efficiency in older adults. The Journals of Gerontology, Series A: Biological Sciences & Medical Sciences. XX, 18. PubMed ID: 30107534 doi:10.1093/gerona/gly181

    • Search Google Scholar
    • Export Citation
  • Holtzer, R., Mahoney, J.R., Izzetoglu, M., Izzetoglu, K., Onaral, B., & Verghese, J. (2011). fNIRS study of walking and walking while talking in young and old individuals. The Journals of Gerontology, Series A: Biological Sciences & Medical Sciences, 66, 879887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtzer, R., Verghese, J., Xue, X., & Lipton, R.B. (2006). Cognitive processes related to gait velocity: Results from the Einstein Aging Study. Neuropsychology, 20, 215223. PubMed ID: 16594782 doi:10.1037/0894-4105.20.2.215

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbard, E.A., Wetter, N.C., Sutton, B.P., Pilutti, L.A., & Motl, R.W. (2016). Diffusion tensor imaging of the corticospinal tract and walking performance in multiple sclerosis. Journal of the Neurological Scienecs, 363, 225231. doi:10.1016/j.jns.2016.02.044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izzetoglu, M., Chitrapu, P., Bunce, S., & Onaral, B. (2010). Motion artifact cancellation in NIR spectroscopy using discrete Kalman filtering. Biomedical Engineering Online, 9, 16. doi:10.1186/1475-925X-9-16

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostic, M., Stojanoviv, I., Marjanovic, G., Zivkovic, N., & Cvetanovic, A. (2015). Deleterious versus protective autoimmunity in multiple sclerosis Cellular Immunology, 296(2), 122132. doi:10.1016/j.cellimm.2015.04.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurtzke, J.F. (1983). Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology, 33, 14441452. PubMed ID: 6685237 doi:10.1212/WNL.33.11.1444

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larocca, N.G. (2011). Impact of walking impairment in multiple sclerosis: Perspectives of patients and care partners. Patient, 4, 189201. PubMed ID: 21766914 doi:10.2165/11591150-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Levin, M.F., Scholz, J.P., & Schoner, G. (2010). Motor control theories and their applications. Medicina, 46 (6), 382392. doi:10.3390/medicina46060054

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Learmonth, Y.C., Ensari, I., & Motl, R.W. (2016). Cognitive motor interference in multiple sclerosis: Insights from a systematic, quantitative review. Archives of Physical Medicine and Rehabilitation, 98, 12291240. doi:10.1016/j.apmr.2016.07.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leone, C., Patti, F., & Feys, P. (2015). Measuring the cost of cognitive-motor dual tasking during walking in multiple sclerosis. Multiple Sclerosis, 21, 123131. doi:10.1177/1352458514547408

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, M.F. (2000). Sensorimotor deficits in patients with central nervous system lesions: Explanations based on the λ model of motor control. Human Movement Science, 19(1), 107137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loitfelder, M., Fazekas, F., Koschutnig, K., Fuchs, S., Petrovic, K., Ropele, S., . . . Enzinger, C. (2014). Brain activity changes in cognitive networks in relapsing-remitting multiple sclerosis—Insights from a longitudinal fMRI study. PLoS ONE, 9, e93715. PubMed ID: 24718105 doi:10.1371/journal.pone.0093715

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malcolm, B.R., Foxe, J.J., Butler, J.S., & De Sanctis, P. (2015). The aging brain shows less flexible reallocation of cognitive resources during dual-task walking: A mobile brain/body imaging (MoBI) study. NeuroImage, 117, 230242. PubMed ID: 25988225 doi:10.1016/j.neuroimage.2015.05.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marrie, R.A., Yu, N., Blanchard, J., Leung, S., & Elliott, L. (2010). The rising prevalence and changing age distribution of multiple sclerosis in Manitoba. Neurology, 74, 465471. PubMed ID: 20071664 doi:10.1212/WNL.0b013e3181cf6ec0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mihara, M., Miyai, I., Hatakenaka, M., Kubota, K., & Sakoda, S. (2008). Role of the prefrontal cortex in human balance control. NeuroImage, 43, 329336. PubMed ID: 18718542 doi:10.1016/j.neuroimage.2008.07.029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyai, I., Tanabe, H.C., Sase, I., Eda, H., Oda, I., Konishi, I., . . . Kubota, K. (2001). Cortical mapping of gait in humans: A near-infrared spectroscopic topography study. NeuroImage, 14, 11861192. PubMed ID: 11697950 doi:10.1006/nimg.2001.0905

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, Y., Sung, J., An, R., Hernandez, M.E., & Sosnoff, J.J. (2016). Gait variability in people with neurological disorders: A systematic review and meta-analysis. Human Movement Science, 47, 197208. doi:10.1016/j.humov.2016.03.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Motl, R.W. (2013). Ambulation and multiple sclerosis. Physical Medicine & Rehabilitation Clinics of North America, 24, 325336. doi:10.1016/j.pmr.2012.11.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nebel, K., Wiese, H., Seyfarth, J., Gizewski, E.R., Stude, P., Diener, H.C., & Limmroth, V. (2007). Activity of attention related structures in multiple sclerosis patients. Brain Research, 1151, 150160. PubMed ID: 17397807 doi:10.1016/j.brainres.2007.03.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noseworthy, J.H., Lucchinetti, C., Rodriguez, M., & Weinshenker, B.G. (2000). Multiple sclerosis. The New England Journal of Medicine, 343, 938952. doi:10.1056/NEJM200009283431307

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohsugi, H., Ohgi, S., Shigemori, K., & Schneider, E.B. (2013). Differences in dual-task performance and prefrontal cortex activation between younger and older adults. BMC Neuroscience, 14, 10. PubMed ID: 23327197 doi:10.1186/1471-2202-14-10

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

  • Reuter-Lorenz, P.A., Jonides, J., Smith, E.E., Hartley, A., Miller, A., Marshuetz, C., . . . Koeppe, R.A. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 12, 174187. doi:10.1162/089892900561814

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanai, S.A., Saini, V., Benedict, R.H., Zivadinov, R., Teter, B.E., Ramanathan, M., & Weinstock-Guttman, B. (2016). Aging and multiple sclerosis. Multiple Sclerosis, 22, 717725. doi:10.1177/1352458516634871

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sbardella, E., Petsas, N., Tona, F., Prosperini, L., Raz, E., Pace, G., & Pantano, P. (2013). Assessing the correlation between grey and white matter damage with motor and cognitive impairment in multiple sclerosis patients. PLoS ONE, 8, e63250. PubMed ID: 23696802 doi:10.1371/journal.pone.0063250

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidler, R.D., Bernard, J.A., Burutolu, T.B., Fling, B.W., Gordon, M.T., Gwin, J.T., . . . Lipps, D.B. (2010). Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neuroscience & Biobehavioral Reviews, 34, 721733. doi:10.1016/j.neubiorev.2009.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sosnoff, J.J., Boes, M.K., Sandroff, B.M., Socie, M.J., Pula, J.H., & Motl, R.W. (2011). Walking and thinking in persons with multiple sclerosis who vary in disability. Archives of Physical Medicine and Rehabilitation, 92, 20282033. doi:10.1016/j.apmr.2011.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staffen, W., Mair, A., Zauner, H., Unterrainer, J., Niederhofer, H., Kutzelnigg, A., . . . Ladurner, G. (2002). Cognitive function and fMRI in patients with multiple sclerosis: Evidence for compensatory cortical activation during an attention task. Brain, 125, 12751282. PubMed ID: 12023316 doi:10.1093/brain/awf125

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stellmann, J.P., Vettorazzi, E., Poettgen, J., & Heesen, C. (2014). A 3 meter timed tandem walk is an early marker of motor and cerebellar impairment in fully ambulatory MS patients. Journal of Neurological Sciences, 346, 99106. doi:10.1016/j.jns.2014.08.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47, 20152028. PubMed ID: 19467352 doi:10.1016/j.neuropsychologia.2009.03.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stojanovic-Radic, J., Wylie, G., Voelbel, G., Chiaravalloti, N., & DeLuca, J. (2014). Neuroimaging and cognition using functional near infrared spectroscopy (fNIRS) in multiple sclerosis. Brain Imaging and Behavior, 9, 302311. doi:10.1007/s11682-014-9307-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, M., Miyai, I., Ono, T., Oda, I., Konishi, I., Kochiyama, T., & Kubota, K. (2004). Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: An optical imaging study. NeuroImage, 23, 10201026. PubMed ID: 15528102 doi:10.1016/j.neuroimage.2004.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szturm, T.J., Sakhalkar, V.S., Kanitkar, A., & Nankar, M. (2017). Computerized dual-task testing of gait and visuospatial cognitive functions; test-retest reliability and validity. Frontiers in Human Neuroscience, 11, 105. doi:10.3389/fnhum.2017.00105

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takakusaki, K. (2008). Forebrain control of locomotor behaviors. Brain Research Reviews, 57, 192198. doi:10.1016/j.brainresrev.2007.06.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takakusaki, K. (2013). Neurophysiology of gait: From the spinal cord to the frontal lobe. Movement Disorders: Official Journal of the Movement Disorder Society, 28, 14831491. doi:10.1002/mds.25669

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wajda, D.A., Motl, R.W., & Sosnoff, J.J. (2013). Dual task cost of walking is related to fall risk in persons with multiple sclerosis. Journal of Neurological Science, 335, 160163. doi:10.1016/j.jns.2013.09.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welsh, K.A., Breitner, J.C.S., & Magruder-Habib, K.M. (1993). Detection of dementia in the elderly using telephone screening of cognitive status. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 6, 103110.

    • Search Google Scholar
    • Export Citation
  • Yogev-Seligmann, G., Hausdorff, J.M., & Giladi, N. (2008). The role of executive function and attention in gait. Movement Disorders: Official Journal of the Movement Disorder Society, 23, 329342. doi:10.1002/mds.21720

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., Chen, C., Zhang, H., Xue, G., Dong, Q., Jin, Z., . . . Chen, C. (2006). Neural substrates for forward and backward recitation of numbers and the alphabet: A close examination of the role of intraparietal sulcus and perisylvian areas. Brain Research, 1099, 109120. PubMed ID: 16784724 doi:10.1016/j.brainres.2006.01.133

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2754 760 8
Full Text Views 65 19 0
PDF Downloads 66 36 0