Temporal and Force Characteristics of Rapid Single-Finger Tapping in Healthy Older Adults

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

The purpose of this study was to examine finger motor function in terms of temporal and force characteristics during rapid single-finger tapping in older adults. Ten older and 10 young males performed maximum frequency tapping by the index, middle, ring, or little finger. Nontapping fingers were maintained in contact with designated keys during tasks. Key-contact force for each of the fingers was monitored using four force transducers. The older subjects had slower tapping rates of all fingers during single-finger tapping than the young subjects. The average forces exerted by the nontapping fingers were larger for the older subjects than for the young subjects during tapping with the ring and little fingers. The ranges of the nontapping finger forces were larger for the older subjects during tapping by the middle, ring, and little fingers than for the young subjects. Thus, the motor abilities of the fingers evaluated by rapid single-finger tapping decline in older adults compared with young adults in terms of both movement speed and finger independence.

Aoki is with the Faculty of Environmental & Symbiotic Sciences, Prefectural University of Kumamoto, Higashi-ku, Kumamoto, Japan. Tsuda is with the Dept. of Occupational Therapy, Aino University, Ibaraki, Osaka, Japan. Kinoshita is with Osaka Aoyama University, Minoh, Osaka, Japan.

Aoki (aoki@pu-kumamoto.ac.jp) is corresponding author.
Motor Control
Article Sections
References
  • AokiT.FrancisP.R. & KinoshitaH. (2003). Differences in the abilities of individual fingers during the performance of fast, repetitive tapping movements. Experimental Brain Research 152(2) 270280. PubMed ID: 12898096 doi:10.1007/s00221-003-1552-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AokiT. & FukuokaY. (2010). Finger tapping ability in healthy elderly and young adults. Medicine & Science in Sports & Exercise 42(3) 449455. PubMed ID: 19952813 doi:10.1249/MSS.0b013e3181b7f3e1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AokiT.FuruyaS. & KinoshitaH. (2005). Finger-tapping ability in male and female pianists and nonmusician controls. Motor Control 9(1) 2339. PubMed ID: 15784948 doi:10.1123/mcj.9.1.23

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AokiT. & KinoshitaH. (2001). Temporal and force characteristics of fast double-finger, single-finger and hand tapping. Ergonomics 44(15) 13681383. PubMed ID: 11936828 doi:10.1080/00140130110107452

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AokiT.TsudaH.TakasawaM.OsakiY.OkuN.HatazawaJ. & KinoshitaH. (2005). The effect of tapping finger and mode differences on cortical and subcortical activities: A PET study. Experimental Brain Research 160(3) 375383. PubMed ID: 15368088 doi:10.1007/s00221-004-2008-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CalauttiC.SerratiC. & BaronJ.C. (2001). Effects of age on brain activation during auditory-cued thumb-to-index opposition: A positron emission tomography study. Stroke 32(1) 139146. PubMed ID: 11136929 doi:10.1161/01.STR.32.1.139

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ColeK.J. (1991). Grasp force control in older adults. Journal of Motor Behavior 23(4) 251258. PubMed ID: 14766507 doi:10.1080/00222895.1991.9942036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CousinsM.S.CorrowC.FinnM. & SalamoneJ.D. (1998). Temporal measures of human finger tapping: Effects of age. Pharmacology Biochemistry and Behavior 59(2) 445449. doi:10.1016/S0091-3057(97)00443-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GodefroyO.SpagnoloS.RousselM. & BoucartM. (2010). Stroke and action slowing: Mechanisms, determinants and prognosis value. Cerebrovascular Diseases 29(5) 508514. PubMed ID: 20299792 doi:10.1159/000297968

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HackelM.E.WolfeG.A.BangS.M. & CanfieldJ.S. (1992). Changes in hand function in the aging adult as determined by the Jebsen Test of Hand Function. Physical Therapy 72(5) 373377. PubMed ID: 1631206 doi:10.1093/ptj/72.5.373

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häger-RossC. & SchieberM.H. (2000). Quantifying the independence of human finger movements: Comparisons of digits, hands, and movement frequencies. The Journal of Neuroscience 20(22) 85428550. PubMed ID: 11069962 doi:10.1523/JNEUROSCI.20-22-08542.2000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HermsdörferJ.MarquardtC.WackS. & MaiN. (1999). Comparative analysis of diadochokinetic movements. Journal of Electromyography and Kinesiology 9(4) 283295. doi:10.1016/S1050-6411(98)00050-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HeuninckxS.WenderothN.DebaereF.PeetersR. & SwinnenS.P. (2005). Neural basis of aging: The penetration of cognition into action control. The Journal of Neuroscience 25(29) 67876796. PubMed ID: 16033888 doi:10.1523/JNEUROSCI.1263-05.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HubelK.A.ReedB.YundE.W.HerronT.J. & WoodsD.L. (2013). Computerized measures of finger tapping: Effects of hand dominance, age, and sex. Perceptual and Motor Skills 116(3) 929952. PubMed ID: 24175464 doi:10.2466/25.29.PMS.116.3.929-952

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HutchinsonS.KobayashiM.HorkanC.M.Pascual-LeoneA.AlexanderM.P. & SchlaugG. (2002). Age-related differences in movement representation. NeuroImage 17(4) 17201728. PubMed ID: 12498746 doi:10.1006/nimg.2002.1309

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez-JiménezF.J.CallejaM.Alonso-NavarroH.RubioL.NavacerradaF.Pilo-de-la-Fuente . . . AgúndezJ.A. (2011). Influence of age and gender in motor performance in healthy subjects. Journal of the Neurological Sciences 302(1–2) 7280. doi:10.1016/j.jns.2010.11.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KapurS.ZatsiorskyV.M. & LatashM.L. (2010). Age-related changes in the control of finger force vectors. Journal of Applied Physiology 109(6) 18271841. PubMed ID: 20829494 doi:10.1152/japplphysiol.00430.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KauranenK. & VanharantaH. (1996). Influences of aging, gender, and handedness on motor performance of upper and lower extremities. Perceptual and Motor Skills 82(2) 515525. PubMed ID: 8724924 doi:10.2466/pms.1996.82.2.515

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KeenD.A. & FuglevandA.J. (2004). Distribution of motor unit force in human extensor digitorum assessed by spike-triggered averaging and intraneural microstimulation. Journal of Neurophysiology 91(6) 25152523. PubMed ID: 14724266 doi:10.1152/jn.01178.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LangC.E. & SchieberM.H. (2004). Human finger independence: Limitations due to passive mechanical coupling versus active neuromuscular control. Journal of Neurophysiology 92(5) 28022810. PubMed ID: 15212429 doi:10.1152/jn.00480.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacleodA.D. & CounsellC.E. (2010). Timed tests of motor function in Parkinson’s disease. Parkinsonism & Related Disorders 16(7) 442446. PubMed ID: 20471297 doi:10.1016/j.parkreldis.2010.04.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKiernanB.J.MarcarioJ.K.KarrerJ.H. & CheneyP.D. (1998). Corticomotoneuronal postspike effects in shoulder, elbow, wrist, digit, and intrinsic hand muscles during a reach and prehension task. Journal of Neurophysiology 80(4) 19611980. PubMed ID: 9772253 doi:10.1152/jn.1998.80.4.1961

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MichellA.W.GoodmanA.O.SilvaA.H.LazicS.E.MortonA.J. & BarkerR.A. (2008). Hand tapping: A simple, reproducible, objective marker of motor dysfunction in Huntington’s disease. Journal of Neurology 255(8) 11451152. PubMed ID: 18465109 doi:10.1007/s00415-008-0859-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OldfieldR.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9(1) 97113. PubMed ID: 5146491 doi:10.1016/0028-3932(71)90067-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OliveiraM.A.HsuJ.ParkJ.ClarkJ.E. & ShimJ.K. (2008). Age-related changes in multi-finger interactions in adults during maximum voluntary finger force production tasks. Human Movement Science 27(5) 714727. PubMed ID: 18762348 doi:10.1016/j.humov.2008.04.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ParikhP.J. & ColeK.J. (2012). Handling objects in old age: Forces and moments acting on the object. Journal of Applied Physiology 112(7) 10951104. PubMed ID: 22241054 doi:10.1152/japplphysiol.01385.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RanganathanV.K.SiemionowV.SahgalV. & YueG.H. (2001). Effects of aging on hand function. The Journal of the American Geriatrics Society 49(11) 14781484. PubMed ID: 11890586 doi:10.1046/j.1532-5415.2001.4911240.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ReillyK.T. & SchieberM.H. (2003). Incomplete functional subdivision of the human multitendoned finger muscle flexor digitorum profundus: An electromyographic study. Journal of Neurophysiology 90(4) 25602570. PubMed ID: 12815024 doi:10.1152/jn.00287.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RieckerA.GröschelK.AckermannH.SteinbrinkC.WitteO. & KastrupA. (2006). Functional significance of age-related differences in motor activation patterns. NeuroImage 32(3) 13451354. PubMed ID: 16798017 doi:10.1016/j.neuroimage.2006.05.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RuffR.M. & ParkerS.B. (1993). Gender- and age-specific changes in motor speed and eye-hand coordination in adults: Normative values for the Finger Tapping and Grooved Pegboard Tests. Perceptual and Motor Skills 76(3 Pt 2) 12191230. PubMed ID: 8337069 doi:10.2466/pms.1993.76.3c.1219

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchieberM.H. (1995). Muscular production of individuated finger movements: The roles of extrinsic finger muscles. The Journal of Neuroscience 15(1) 284297. doi:10.1523/JNEUROSCI.15-01-00284.1995

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchieberM.H. & SantelloM. (2004). Hand function: Peripheral and central constraints on performance. Journal of Applied Physiology 96(6) 22932300. PubMed ID: 15133016 doi:10.1152/japplphysiol.01063.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ShinoharaM.LatashM.L. & ZatsiorskyV.M. (2003). Age effects on force produced by intrinsic and extrinsic hand muscles and finger interaction during MVC tasks. Journal of Applied Physiology 95(4) 13611369. PubMed ID: 12626484 doi:10.1152/japplphysiol.00070.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ShinoharaM.LiS.KangN.ZatsiorskyV.M. & LatashM.L. (2003). Effects of age and gender on finger coordination in MVC and submaximal force-matching tasks. Journal of Applied Physiology 94259270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von SchroederH.P. & BotteM.J. (1993). The functional significance of the long extensors and juncturae tendinum in finger extension. The Journal of Hand Surgery 18(4) 641647. PubMed ID: 8349973 doi:10.1016/0363-5023(93)90309-Q

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WuT. & HallettM. (2005). The influence of normal human ageing on automatic movements. The Journal of Physiology 562(2) 605615. doi:10.1113/jphysiol.2004.076042

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ZatsiorskyV.M.LiZ.M. & LatashM.L. (1998). Coordinated force production in multi-finger tasks: Finger interaction and neural network modeling. Biological Cybernetics 79139150. PubMed ID: 9791934 doi:10.1007/s004220050466

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 40 40 17
Full Text Views 7 7 3
PDF Downloads 6 6 2
Altmetric Badge
PubMed
Google Scholar