Task Constraints and Coordination Flexibility in Young Swimmers

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

This study aimed to examine young swimmers’ behavioral flexibility when facing different task constraints, such as swimming speed and stroke frequency. Eighteen (five boys and 13 girls) 13- to 15-year-old swimmers performed a 15 × 50-m front crawl with five trials, at 100%, 90%, and 70% each of their 50 m maximal swimming speed and randomly at 90%, 95%, 100%, 105%, and 110% of their preferred stroke frequency. Seven aerial and six underwater cameras were used to assess kinematics (one cycle), with upper-limb coordination computed through a continuous relative phase and index of coordination. A cluster analysis identified six patterns of coordination used by swimmers when facing various speed and stroke frequency constraints. The patterns’ nature and the way the swimmers shifted between them are more important than getting the highest number of patterns (range of repertoire), that is, a change in the motor pattern in order to adapt correctly is more important than being able to execute a great number of patterns.

Silva, Vilas-Boas, and Fernandes are with the Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal. Silva, Morais, Vilas-Boas, and Fernandes are with LABIOMEP (Porto Biomechanics Laboratory), University of Porto, Porto, Portugal. Figueiredo is with Portugal Football School, Portuguese Football Federation, Lisbon, Portugal. Seifert is with CETAPS EA3832, Faculty of Sport Sciences, University of Rouen Normandy, Mont-Saint-Aignan, France.

Silva (anafilsilva@gmail.com) is corresponding author.
Motor Control
Article Sections
References
  • BardyB.OullierO.BootsmaR. & StoffregenT. (2002). Dynamics of human postural transitions. Journal of Experimental Psychology: Human Perception and Performance 28(3) 499514. PubMed ID: 12075884

    • Search Google Scholar
    • Export Citation
  • BernsteinN.A. (1996). On dexterity and its development. In M.L. Latash& M.T. Turvey (Eds.) Dexterity and its development (pp. 9243). Mahwah, NJ: Lawrence Erlbaum Associates.

    • Search Google Scholar
    • Export Citation
  • BideaultG.HeraultR. & SeifertL. (2013). Data modelling reveals inter-individual variability of front crawl swimming. Journal of Science and Medicine in Sport 16281285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BouveyronC. & Brunet-SaumardC. (2014). Model-based clustering of high-dimensional data: A review. Computational Statistics & Data Analysis 715278. doi:10.1016/j.csda.2012.12.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CholletD.ChaliesS. & ChatardJ.C. (2000). A new index of coordination for the crawl: Description and usefulness. International Journal of Sports Medicine21(1) 5459. PubMed ID: 10683100 doi:10.1055/s-2000-8855

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DavidsK.AraújoD.HristovskiR.PassosP. & ChowJ.Y. (2012). Ecological dynamics and motor learning design in sport. In N.J. Hodges& A.M. Williams (Eds.) Skill acquisition in sport: Research theory and practice (pp. 112130). New York, NY: Routledge.

    • Search Google Scholar
    • Export Citation
  • DavidsK.AraújoD.ShuttleworthR. & ButtonC. (2003). Acquiring skill in sport: A constraints-led perspective. International Journal of Computer Science in Sport 41(11/12) 516.

    • Search Google Scholar
    • Export Citation
  • DeutschK.M. & NewellK.M. (2001). Age differences in noise and variability of isometric force production. Journal of Experimental Child Psychology 80(4) 392408. PubMed ID: 11689037 doi:10.1006/jecp.2001.2642

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DudaR.O.HartP.E. & StorkD.G. (2001). Pattern classification (2nd ed.). New York, NY: Wiley-Interscience Publication.

  • EdelmanG.M. & GallyJ.A. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences of the United States of America 98(24) 1376313768. doi:10.1073/pnas.231499798

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FigueiredoP.SeifertL.Vilas-BoasJ.P. & FernandesR.J. (2012). Individual profiles of spatio-temporal coordination in high intensity swimming. Human Movement Science 31(5) 12001212. PubMed ID: 22921924 doi:10.1016/j.humov.2012.01.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FigueiredoP.SilvaA.SampaioA.Vilas-BoasJ.P. & FernandesR.J. (2015). Front crawl sprint performance: A cluster analysis of biomechanics, energetics, coordinative, and anthropometric determinants in young swimmers. Motor Control 20(3) 209221. PubMed ID: 26061270 doi:10.1123/mc.2014-0050

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FuchsA.JirsaV.K.HakenH. & KelsoJ.A. (1996). Extending the HKB model of coordinated movement to oscillators with different eigenfrequencies. Biological Cybernetics 74(1) 2130. PubMed ID: 8573650 doi:10.1007/BF00199134

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GuignardB.RouardA.CholletD.AyadO.BonifaziM.Dalla VedovaD. & SeifertL. (2017). Perception and action in swimming: Effects of aquatic environment on upper limb inter-segmental coordination. Human Movement Science 55240254. PubMed ID: 28846856 doi:10.1016/j.humov.2017.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GuignardB.RouardA.CholletD. & SeifertL. (2017). Behavioral dynamics in swimming: The appropriate use of inertial measurement units. Frontiers in Psychology 8383. PubMed ID: 28352243 doi:10.3389/fpsyg.2017.00383

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HellardP.DekerleJ.AvalosM.CaudalN.KnoppM. & HausswirthC. (2008). Kinematic measures and stroke rate variability in elite female 200-m swimmers in the four swimming techniques: Athens 2004 Olympic semi-finalists and French National 2004 Championship semi-finalists. Journal of Sports Sciences 26(1) 3546. PubMed ID: 17896287 doi:10.1080/02640410701332515

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KelsoJ.A. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA: The MIT Press.

  • KurzM.J. & StergiouN. (2002). Effect of normalization and phase angle calculations on continuous relative phase. Journal of Biomechanics 35(3) 369374. PubMed ID: 11858813 doi:10.1016/S0021-9290(01)00211-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LambP.F. & StöcklM. (2014). On the use of continuous relative phase: Review of current approaches and outline for a new standard. Clinical Biomechanics 29(5) 484493. PubMed ID: 24726779 doi:10.1016/j.clinbiomech.2014.03.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LerdaR. & CardelliC. (2003). Breathing and propelling in crawl as a function of skill and swim velocity. International Journal of Sports Medicine 24(1) 7580. PubMed ID: 12582956 doi:10.1055/s-2003-37195

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LuddenT.M.BealS.L. & SheinerL.B. (1994). Comparison of the Akaike information criterion, the Schwarz criterion and the F test as guides to model selection. Journal of Pharmacokinetics & Biopharmaceutics 22(5) 431445. PubMed ID: 7791040 doi:10.1007/BF02353864

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacDonaldS.NybergL. & BäckmanL. (2006). Intra-individual variability in behavior: Links to brain structure, neurotransmission and neuronal activity. Trends in Neurosciences 29(8) 474480. PubMed ID: 16820224 doi:10.1016/j.tins.2006.06.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MalinaR.M.BouchardC. & Bar-OrO. (2004). Growth maturation and physical activity (2nd ed.). Champaign, IL: Human Kinetics.

  • McCabeC.B. & SandersR.H. (2012). Kinematic differences between front crawl sprint and distance swimmers at a distance pace. Journal of Sports Sciences 30(6) 601608. PubMed ID: 22315962 doi:10.1080/02640414.2012.660186

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NasirzadeA.EhsanbakhshA.IlbeygiS.SobhkhizA.ArgavaniH. & AliakbariM. (2014). Relationship between sprint performance of front crawl swimming and muscle fascicle length in young swimmers. Journal of Sports Science and Medicine 13(3) 550556. PubMed ID: 25177181

    • Search Google Scholar
    • Export Citation
  • NasirzadeA.SadeghiH.SobhkhizA.MohammadianK.NikoueiA.BaghaiyanM. & FattahiA. (2015). Multivariate analysis of 200-m front crawl swimming performance in young male swimmers. Acta of Bioengineering and Biomechanics 17(3) 137143. PubMed ID: 26686911

    • Search Google Scholar
    • Export Citation
  • NewellK.M. (1986). Constraints on the development of coordination. In M.G. Wade& H.T.A. Whiting (Eds.) Motor development in children: Aspects of coordination and control (pp. 341361). Amsterdam, The Netherlands: Nijhoff.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PotdevinF.BrilB.SidneyM. & PelayoP. (2006). Stroke frequency and arm coordination in front crawl swimming. International Journal of Sports Medicine 27(3) 193198. PubMed ID: 16541374 doi:10.1055/s-2005-837545

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SeifertL.ButtonC. & BrazierT. (2010). Interacting constraints and coordination in swimming. In I. RenshawK. Davids & G.J.P. Savelsbergh (Eds.) Motor learning in practice: A constraints-led approach (pp. 8398). London, UK: Routledge.

    • Search Google Scholar
    • Export Citation
  • SeifertL.ButtonC. & DavidsK. (2013). Key properties of expert movement systems in sport : An ecological dynamics perspective. Sports Medicine 43167178. PubMed ID: 23329604 doi:10.1007/s40279-012-0011-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SeifertL. & CholletD. (2010). Modelling arm coordination in front crawl. Biomechanics and Medicine in Swimming XI(2) 117118.

  • SeifertL.CholletD. & BardyB.G. (2004). Effect of swimming velocity on arm coordination in the front crawl: A dynamic analysis. Journal of Sports Sciences 22(7) 651660. PubMed ID: 15370496 doi:10.1080/02640410310001655787

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SeifertL.CholletD. & RouardA. (2007). Swimming constraints and arm coordination. Human Movement Science 266886. PubMed ID: 17126942 doi:10.1016/j.humov.2006.09.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SeifertL.De JesusK.KomarJ.RibeiroJ.AbraldesJ.A.FigueiredoP.FernandesR.J. (2016). Behavioural variability and motor performance: Effect of practice specialization in front crawl swimming. Human Movement Science 47141150. PubMed ID: 26991729 doi:10.1016/j.humov.2016.03.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SeifertL.DelignieresD.BoulesteixL. & CholletD. (2007). Effect of expertise on butterfly stroke coordination. Journal of Sports Sciences 25(2) 131141. PubMed ID: 17127588 doi:10.1080/02640410600598471

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SeifertL.LeblancH.HeraultR.ButtonC.KomarJ. & CholletD. (2011). Inter-subject variability in the upper-lower limb breaststroke coordination. Human Movement Science 30550565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SilvaA.FigueiredoP.SoaresS.SeifertL.Vilas-BoasJ.P. & FernandesR.J. (2012). Front crawl technical characterization of 11- to 13-year-old swimmers. Pediatric Exercise Science 24(3) 409419. PubMed ID: 22971557 doi:10.1123/pes.24.3.409

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simbaña EscobarD.HellardP.PyneD.B. & SeifertL. (2018). Functional role of movement and performance variability: Adaptation of front crawl swimmers to competitive swimming constraints. Journal of Applied Biomechanics 34(1) 5364. doi:10.1123/jab.2017-0022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SozañskiH. (1999). Principles of training theory. Warszawa, Poland: COS.

  • ToussaintH. & TruijensM. (2005). Biomechanical aspects of peak performance in human swimming. Animal Biology 55(1) 1740. doi:10.1163/1570756053276907

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WarrenW.H. (2006). The dynamics of perception and action. Psychological Review 113(2) 358389. PubMed ID: 16637765 doi:10.1037/0033-295X.113.2.358

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 60 60 30
Full Text Views 4 4 2
PDF Downloads 3 3 1
Altmetric Badge
PubMed
Google Scholar
Cited By