Effect of Time and Direction Preparation on Ankle Muscle Response During Backward Translation of a Support Surface in Stance

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

This study investigated the effect of the time and direction preparation on the electromyographic (EMG) response of the ankle extensor to the backward translation of the support surface in stance. Fifteen healthy adult males aged 35.9 ± 6.2 years participated in this study. In the constant session, the interval between the warning cue and the onset of the backward support surface translation was constant. In the random time session, the interval was randomly assigned in each trial, but the direction was backward across the trials. In the random direction session, the direction was randomly assigned in each trial, but the interval was constant. The EMG amplitude in the time epochs 100–175 ms after translation onset in the random time session was significantly greater than that in the constant session in the soleus, gastrocnemius, and tibialis anterior muscles. The EMG amplitude in the time epochs 120–185 ms after translation onset in the random direction session was significantly greater than that in the constant session in the gastrocnemius and tibialis anterior muscles. This finding indicates that time and direction preparation reduces the late component of the ankle EMG response to backward translation of the support surface. This finding is explained by the supposed process through which uncertainty of the upcoming event causes disinhibition of response or by how time and direction preparation optimizes the magnitude of the long-latency response mediated by the transcortical pathway.

Matsuoka and Kunimura are with the Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan. Hiraoka is with the College of Health and Human Sciences, Osaka Prefecture University, Habikino, Osaka, Japan.

Hiraoka (hiraoka@rehab.osakafu-u.ac.jp) is corresponding author.
  • Ackermann, H., Dichgans, J., & Guschlbauer, B. (1991). Influence of an acoustic preparatory signal on postural reflexes of the distal leg muscles in humans. Neuroscience Letters, 127, 242246. PubMed ID: 1881636 doi:10.1016/0304-3940(91)90803-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allum, J.H.J., & Honegger, F. (1998). Interactions between vestibular and proprioceptive inputs triggering and modulating human balance-correcting responses differ across muscles. Experimental Brain Research, 121, 478494. PubMed ID: 9746156 doi:10.1007/s002210050484

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banks, R.W. (2006). An allometric analysis of the number of muscle spindles in mammalian skeletal muscles. Journal of Anatomy, 208, 753768. PubMed ID: 16761976 doi:10.1111/j.1469-7580.2006.00558.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloem, B.R., Allum, J.H.J., Carpenter, M.G., & Honegger, F. (2000). Is lower leg proprioception essential for triggering human automatic postural responses?. Experimental Brain Research, 130, 375391. PubMed ID: 10706436 doi:10.1007/s002219900259

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bloem, B.R., Allum, J.H.J., Carpenter, M.G., Verschuuren, J.J., & Honegger, F. (2002). Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss. Experimental Brain Research, 142, 91107. PubMed ID: 11797087 doi:10.1007/s00221-001-0926-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, R.E. (1967). Motor unit types of cat triceps surae muscle. Journal of Physiology, 193, 141160. PubMed ID: 16992281 doi:10.1113/jphysiol.1967.sp008348

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cenciarini, M., Loughlin, P.J., Sparto, P.J., & Redfern, M.S. (2010). Stiffness and damping in postural control increase with age. IEEE Transactions on Biomedical Engineering, 57, 267275. PubMed ID: 19770083 doi:10.1109/TBME.2009.2031874

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chambers, A.J., & Cham, R. (2007). Slip-related muscle activation patterns in the stance leg during walking. Gait & Posture, 25, 565572. PubMed ID: 16876417 doi:10.1016/j.gaitpost.2006.06.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dakin, C.J., Heroux, M.E., Luu, B.L., Inglis, J.T., & Blouin, J.S. (2015). Vestibular contribution to balance control in the medial gastrocnemius and soleus. American Journal of Physiology Heart and Circulation Physiology, 115, 12891297. doi:10.1152/jn.00512.2015

    • Search Google Scholar
    • Export Citation
  • de Lima, A.C., de Azevedo Neto, R.M., & Teixeira, L.A. (2010). On the functional integration between postural and supra-postural tasks on the basis of contextual cues and task constraint. Gait & Posture, 32, 615618. PubMed ID: 20889343 doi:10.1016/j.gaitpost.2010.09.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diener, H.C., Dichgans, J., Bootz, F., & Bacher, M. (1984). Early stabilization of human posture after a sudden disturbance: Influence of rate and amplitude of displacement. Experimental Brain Research, 56, 126134. PubMed ID: 6468561 doi:10.1007/BF00237448

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diener, H.C., Horak, F.B., & Nashner, L.M. (1988). Influence of stimulus parameters on human postural responses. Journal of Neurophysiology, 59, 18881905. PubMed ID: 3404210 doi:10.1152/jn.1988.59.6.1888

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dietz, V., Schmidtbleicher, D., & Noth, J. (1979). Neuronal mechanisms of human locomotion. Journal of Neurophysiology, 42, 12121222. PubMed ID: 490196 doi:10.1152/jn.1979.42.5.1212

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elias, L.A., Watanabe, R.N., & Kohn, A.F. (2014). Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: Predictions from a biologically based neuromusculoskeletal model. PLoS Computational Biology, 10, e1003944. PubMed ID: 25393548 doi:10.1371/journal.pcbi.1003944

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujio, K., Obata, H., Kitamura, T., Kawashima, N., & Nakazawa, K. (2018). Corticospinal excitability is modulated as a function of postural perturbation predictability. Frontiers in Human Neuroscience, 12, 68. PubMed ID: 29535618 doi:10.3389/fnhum.2018.00068

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goel, R., Ozdemir, R.A., Nakagome, S., Contreras-Vidal, J.L., Paloski, W.H., & Parikh, P.J. (2018). Effects of speed and direction of perturbation on electroencephalographic and balance responses. Experimental Brain Research, 236, 20732083. PubMed ID: 29752486 doi:10.1007/s00221-018-5284-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grey, M.J., Ladouceur, M., Andersen, J.B., Nielsen, J.B., & Sinkjær, T. (2001). Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans. Journal of Physiology, 534, 925933. PubMed ID: 11483721 doi:10.1111/j.1469-7793.2001.00925.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, P.V., Drizd, T.A., Johnson, C.L., Reed, R.B., & Roche, A.F. (1977). NCHS growth curves for children birth-18 years. Washington, DC: Department Of Health Education And Welfare.

    • Search Google Scholar
    • Export Citation
  • Héroux, M.E., Dakin, C.J., Luu, B.L., Inglis, J.T., & Blouin, J.S. (2013). Absence of lateral gastrocnemius activity and differential motor unit behavior in soleus and medial gastrocnemius during standing balance. Journal of Applied Physiology, 116, 140148. doi:10.1152/japplphysiol.00906.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F.B., Diener, H.C., & Nashner, L.M. (1989). Influence of central set on human postural responses. Journal of Neurophysiology, 62, 841853. PubMed ID: 2809706 doi:10.1152/jn.1989.62.4.841

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F.B., & Nashner, L.M. (1986). Central programming of postural movements: Adaptation to altered support-surface configurations. Journal of Neurophysiology, 55, 13691381. PubMed ID: 3734861 doi:10.1152/jn.1986.55.6.1369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F.B., Nutt, J.G., & Nashner, L.M. (1992). Postural inflexibility in parkinsonian subjects. Journal of Neurological Sciences, 111, 4658. doi:10.1016/0022-510X(92)90111-W

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, J.V., Fujiwara, K., Tomita, H., Furune, N., Kunita, K., & Horak, F.B. (2008). Changes in the activity of the cerebral cortex relate to postural response modification when warned of a perturbation. Clinical Neurophysiology, 119, 14311442. PubMed ID: 18397840 doi:10.1016/j.clinph.2008.02.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, J.V., & Horak, F.B. (2007). Cortical control of postural responses. Journal of Neural Transmission, 114, 13391348. PubMed ID: 17393068 doi:10.1007/s00702-007-0657-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keshner, E.A., Woollacott, M.H., & Debu, B. (1988). Neck, trunk and limb muscle responses during postural perturbations in humans. Experimental Brain Research, 71, 455466. PubMed ID: 3416963 doi:10.1007/BF00248739

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kourtis, D., Kwok, H.F., Roach, N., Wing, A.M., & Praamstra, P. (2008). Maintaining grip: Anticipatory and reactive EEG responses to load perturbations. Journal of Neurophysiology, 99, 545553. PubMed ID: 18032560 doi:10.1152/jn.01112.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunimura, H., Matsuoka, M., Hamada, N., & Hiraoka, K. (2019a). Effects of internal and external attentional focus on postural response to a sliding stance surface. Perceptual and Motor Skills, 126(3):446461. doi:10.1177/0031512519838688

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunimura, H., Matsuoka, M., Hamada, N., & Hiraoka, K. (2019b). Effort to perceive the position of one visual horizontal line relative to another appearing close causes an earlier postural response to backward perturbation. Neuroreport, 30, 151156. doi:10.1097/WNR.0000000000001175

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massion, J. (1994). Postural control system. Current Opinion in Neurobiology, 4, 877887. PubMed ID: 7888772 doi:10.1016/0959-4388(94)90137-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melzer, I., Benjuya, N., & Kaplanski, J. (2001). Age-related changes of postural control: Effect of cognitive tasks. Gerontology, 47, 189194. PubMed ID: 11408723 doi:10.1159/000052797

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morey-Klapsing, G., Arampatzis, A., & Brüggemann, G.P. (2004). Choosing EMG parameters: Comparison of different onset determination algorithms and EMG integrals in a joint stability study. Clinical Biomechanics, 19, 196201. PubMed ID: 14967584 doi:10.1016/j.clinbiomech.2003.10.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, K., Yamada, M., Mori, S., Tanaka, B., Uemura, K., Aoyama, T., … Tsuboyama, T. (2013). Effect of the muscle coactivation during quiet standing on dynamic postural control in older adults. Archives of Gerontology and Geriatrics, 56, 129133. PubMed ID: 22959815 doi:10.1016/j.archger.2012.08.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nardone, A., Corra, T., & Schieppati, M. (1990). Different activations of the soleus and gastrocnemii muscles in response to various types of stance perturbation in man. Experimental Brain Research, 80, 323332. PubMed ID: 2358046 doi:10.1007/BF00228159

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikaido, Y., Hatanaka, R., Jono, Y., Nomura, Y., Tani, K., Chujo, Y., & Hiraoka, K. (2016). Time and direction preparation of the long latency stretch reflex. Human Movement Science, 47, 3848. PubMed ID: 26854584 doi:10.1016/j.humov.2016.01.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nonnekes, J., Scotti, A., Nijhuis, L.O., Smulders, K., Queralt, A., Geurts, A.C.H., … Weerdesteyn, V. (2013). Are postural responses to backward and forward perturbations processed by different neural circuits? Neuroscience, 245, 109120. PubMed ID: 23624061 doi:10.1016/j.neuroscience.2013.04.036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, N., Christensen, L.O.D., Morita, H., Sinkjær, T., & Nielsen, J. (1998). Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior muscle in man. Journal of Physiology, 512, 267276. PubMed ID: 9729635 doi:10.1111/j.1469-7793.1998.267bf.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Runge, C.F., Shupert, C.L., Horak, F.B., & Zajac, F.E. (1998). Role of vestibular information in initiation of rapid postural responses. Experimental Brain Research, 122, 403412. PubMed ID: 9827859 doi:10.1007/s002210050528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schieppati, M., & Nardone, A. (1997). Medium latency stretch reflexes of foot and leg muscles analyzed by cooling the lower limb in standing humans. Journal of Physiology, 503, 691698. PubMed ID: 9379421 doi:10.1111/j.1469-7793.1997.691bg.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinkjær, T., Andersen, J.B., Nielsen, J.F., & Hansen, H.J. (1999). Soleus long-latency stretch reflexes during walking in healthy and spastic humans. Clinical Neurophysiology, 110, 951959. doi:10.1016/S1388-2457(99)00034-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taube, W., Schubert, M., Gruber, M., Beck, S., Faist, M., & Gollhofer, A. (2006). Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. Journal of Applied Physiology, 101, 420429. PubMed ID: 16601305 doi:10.1152/japplphysiol.01447.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, J.R., French, K.E. (1985). Gender differences across age in motor performance: A meta-analysis. Psychological Bulletin, 98, 260282. PubMed ID: 3901062 doi:10.1037/0033-2909.98.2.260

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, K.J., & Türker, K.S. (2004). Muscle spindle feedback differs between the soleus and gastrocnemius in humans. Somatosensory & Motor Research, 21, 189197. PubMed ID: 15763904 doi:10.1080/08990220400012489

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, M.G., Kavanagh, J.J., Barrett, R.S., & Morrison, S. (2008). Age-related differences in postural reaction time and coordination during voluntary sway movements. Human Movement Science, 27, 728737. PubMed ID: 18513814 doi:10.1016/j.humov.2008.03.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Doornik, J., Masakado, Y., Sinkjaer, T., & Nielsen, J.B. (2004). The suppression of the long-latency stretch reflex in the human tibialis anterior muscle by transcranial magnetic stimulation. Experimental Brain Research, 157, 403406. PubMed ID: 15221177 doi:10.1007/s00221-004-1966-2

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 82 82 9
Full Text Views 9 9 1
PDF Downloads 3 3 1