Age- and Sex-Related Differences in the Maximum Muscle Performance and Rate of Force Development Scaling Factor of Precision Grip Muscles

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

The aim of this study was to explore the effects of age and sex on the rate of force development scaling factor (RFD-SF) and maximum performance (i.e., maximum grip force [GFMax] and maximum rate of grip force development [RGFDMax]) of precision handgrip muscles. Sixty-four subjects, allocated in four groups according to their age and sex, were asked to hold an instrumented handle with the tip of the digits and perform two tests: maximum voluntary contraction and RFD-SF tests. In the maximum voluntary contraction test, GFMax and RGFDMax were assessed. In the RFD-SF test, the subjects generated quick isometric force pulses to target amplitudes varying between 20% and 100% of their GFMax. The RFD-SF and R2 values were obtained from the linear relationship between the peak values of the force pulses and the corresponding peak values of the rate of force development. Younger adults and males produced higher GFMax and RGFDMax and presented higher R2 and RFD-SF than older adults and females, respectively. No correlations between GFMax and RFD-SF and between RGFDMax and RFD-SF were observed.

Corrêa, Donato, Lima, Pereira, and de Freitas are with the Interdisciplinary Graduate Program in Health Sciences, Institute of Physical Activity and Sport Sciences, Universidade Cruzeiro do Sul, São Paulo, Brazil. Lima is also with the Universidade Paulista (UNIP), São Paulo, Brazil. Uygur is with the Department of Health and Exercise Science, Rowan University, Glassboro, NJ, USA.

de Freitas (Paulo.deFreitas@cruzeirodosul.edu.br and defreitaspb@gmail.com) is corresponding author.
  • Aagaard, P., Simonsen, E.B., Andersen, J.L., Magnusson, P., & Dyhre-Poulsen, P. (2002). Increased rate of force development and neural drive of human skeletal muscle following resistance training. Journal of Applied Physiology, 93(4), 13181326. PubMed ID: 12235031 doi:10.1152/japplphysiol.00283.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, L.L., & Aagaard, P. (2006). Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. European Journal of Applied Physiology, 96(1), 4652. PubMed ID: 16249918 doi:10.1007/s00421-005-0070-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behm, D.G., & Sale, D.G. (1994). Voluntary and evoked muscle contractile characteristics in active men and women. Canadian Journal of Applied Physiology, 19(3), 253265. PubMed ID: 8000352 doi:10.1139/h94-021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellew, J.W. (2002). A correlation analysis between rate of force development of the quadriceps and postural sway in healthy old adults. Journal of Geriatric Physical Therapy, 25(1), 1115. doi:10.1519/00139143-200225010-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellumori, M., Jaric, S., & Knight, C.A. (2011). The rate of force development scaling factor (RFD-SF): Protocol, reliability, and muscle comparisons. Experimental Brain Research, 212(3), 359369. PubMed ID: 21656219 doi:10.1007/s00221-011-2735-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellumori, M., Jaric, S., & Knight, C.A. (2013). Age-related decline in the rate of force development scaling factor. Motor Control, 17(4), 370381. PubMed ID: 23761421 doi:10.1123/mcj.17.4.370

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellumori, M., Uygur, M., & Knight, C.A. (2017). High-speed cycling intervention improves rate-dependent mobility in old adults. Medicine & Science in Sports & Exercise, 49(1), 106114. PubMed ID: 27501360 doi:10.1249/MSS.0000000000001069

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brustio, P.R., Casale, R., Buttacchio, G., Calabrese, M., Bruzzone, M., Rainoldi, A., & Boccia, G. (2019). Relevance of evaluating the rate of torque development in ballistic contraction of submaximal amplitude. Physiological Measurement, 40(2), 025002. PubMed ID: 30650396 doi: 10.1088/1361-6579/aaff24

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casartelli, N.C., Lepers, R., & Maffiuletti, N.A. (2014). Assessment of the rate of force development scaling factor for the hip muscles. Muscle & Nerve, 50(6), 932938. PubMed ID: 24585686 doi:10.1002/mus.24229

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, S.H.J., Mercer, V.S., Giuliani, C.A., & Sloane, P.D. (2005). Relationship between hip abductor rate of force development and mediolateral stability in old adults. Archives of Physical Medicine and Rehabilitation, 86(9), 18431850. PubMed ID: 16181952 doi:10.1016/j.apmr.2005.03.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christie, A., & Kamen, G. (2006). Doublet discharges in motoneurons of young and old adults. Journal of Neurophysiology, 95(2), 27872795. doi:10.1152/jn.00685.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffey, C.E., Lucke, J.F., Saxton, J.A., Ratcliff, G., Unitas, L.J., Billig, B., & Bryan, R.N. (1998). Sex differences in brain aging: A quantitative magnetic resonance imaging study. Archives of Neurology, 55(2), 169179. PubMed ID: 9482358 doi:10.1001/archneur.55.2.169

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York, NY: Lawrence Erlbaum Associates.

  • Crevecoeur, F., Thonnard, J.L., Lefèvre, P., & Scott, S.H. (2016). Long-latency feedback coordinates upper-limb and hand muscles during object manipulation tasks. eNeuro, 3(1), e0129e152016. doi:10.1523/ENEURO.0129-15.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Freitas, P.B., Knight, C.A., & Barela, J.A. (2010). Postural reactions following forward platform perturbation in young, middle-age, and old adults. Journal of Electromyography and Kinesiology, 20(4), 693700. PubMed ID: 20060318 doi:10.1016/j.jelekin.2009.11.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Der, G., & Deary, I.J. (2006). Age and sex differences in reaction time in adulthood: Results from the United Kingdom Health and Lifestyle Survey. Psychology and Aging, 21(1), 6273. PubMed ID: 16594792 doi:10.1037/0882-7974.21.1.62

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Djordjevic, D., & Uygur, M. (2017). Methodological considerations in the calculation of the rate of force development scaling factor. Physiological Measurement, 39(1), 015001. PubMed ID: 29206109 doi:10.1088/1361-6579/aa9f51

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, J.P., Buckthorpe, M.W., & Hannah, R. (2014). Human capacity for explosive force production: Neural and contractile determinants. Scandinavian Journal of Medicine & Science in Sports, 24(6), 894906. PubMed ID: 25754620 doi:10.1111/sms.12131

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freund, H.J., & Büdingen, H.J. (1978). The relationship between speed and amplitude of the fastest voluntary contractions of human arm muscles. Experimental Brain Research, 31(1), 112. PubMed ID: 639903 doi:10.1007/BF00235800

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frontera, W.R., Hughes, V.A., Lutz, K.J., & Evans, W.J. (1991). A cross-sectional study of muscle strength and mass in 45-to 78-yr-old men and women. Journal of Applied Physiology, 71(2), 644650. PubMed ID: 1938738 doi:10.1152/jappl.1991.71.2.644

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, J., & Ghez, C. (1987). Trajectory control in targeted force impulses. Experimental Brain Research, 67(2), 253269. PubMed ID: 3622688 doi:10.1007/BF00248547

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberland, K., & Uygur, M. (2017). Simultaneous assessment of hand function and neuromuscular quickness through a static object manipulation task in healthy adults. Experimental Brain Research, 235(1), 321329. PubMed ID: 27717994 doi:10.1007/s00221-016-4797-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, K., & Häkkinen, A. (1991). Muscle cross-sectional area, force production and relaxation characteristics in women at different ages. European Journal of Applied Physiology and Occupational Physiology, 62(6), 410414. doi:10.1007/BF00626612

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hannah, R., Minshull, C., Buckthorpe, M.W., & Folland, J.P. (2012). Explosive neuromuscular performance of males versus females. Experimental Physiology, 97(5), 618629. PubMed ID: 22308163 doi:10.1113/expphysiol.2011.063420

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hortobágyi, T., & DeVita, P. (2006). Mechanisms responsible for the age-associated increase in coactivation of antagonist muscles. Exercise and Sport Sciences Reviews, 34(1), 2935. doi:10.1097/00003677-200601000-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, S.K. (2014). Sex differences in human fatigability: Mechanisms and insight to physiological responses. Acta Physiologica, 210(4), 768789. PubMed ID: 24433272 doi:10.1111/apha.12234

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, S.K., & Enoka, R.M. (2001). Sex differences in the fatigability of arm muscles depends on absolute force during isometric contractions. Journal of Applied Physiology, 91(6), 26862694. PubMed ID: 11717235 doi:10.1152/jappl.2001.91.6.2686

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inglis, J.G., McIntosh, K., & Gabriel, D.A. (2017). Neural, biomechanical, and physiological factors involved in sex-related differences in the maximal rate of isometric torque development. European Journal of Applied Physiology, 117(1), 1726. PubMed ID: 27815705 doi:10.1007/s00421-016-3495-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inglis, J.G., Vandenboom, R., & Gabriel, D.A. (2013). Sex-related differences in maximal rate of isometric torque development. Journal of Electromyography and Kinesiology, 23(6), 12891294. PubMed ID: 24148962 doi:10.1016/j.jelekin.2013.09.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaric, S. (2002). Muscle strength testing. Sports Medicine, 32(10), 615631. PubMed ID: 12141882 doi:10.2165/00007256-200232100-00002

  • Johansson, R.S., & Westling, G. (1988). Programmed and triggered actions to rapid load changes during precision grip. Experimental Brain Research, 71(1), 7286. PubMed ID: 3416959 doi:10.1007/BF00247523

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamen, G., Sison, S.V., Du, C.C., & Patten, C.A. (1995). Motor unit discharge behavior in old adults during maximal-effort contractions. Journal of Applied Physiology, 79(6), 19081913. PubMed ID: 8847252 doi:10.1152/jappl.1995.79.6.1908

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kent-Braun, J.A., Ng, A.V., & Young, K. (2000). Skeletal muscle contractile and noncontractile components in young and old women and men. Journal of Applied Physiology, 88(2), 662668. PubMed ID: 10658035 doi:10.1152/jappl.2000.88.2.662

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klass, M., Baudry, S., & Duchateau, J. (2008). Age-related decline in rate of torque development is accompanied by lower maximal motor unit discharge frequency during fast contractions. Journal of Applied Physiology, 104(3), 739746. PubMed ID: 18174392 doi:10.1152/japplphysiol.00550.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z.M., Zatsiorsky, V.M., & Latash, M.L. (1999). Contributions of the extrinsic and intrinsic hand muscles to the moments in finger joints. Journal of Clinical Biomechanics, 15, 203211. doi:10.1016/S0268-0033(99)00058-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lima, K.C.A., Borges, L.B., Hatanaka, E., Rolim, L.C., & de Freitas, P.B. (2017). Grip force control and hand dexterity are impaired in individuals with diabetic peripheral neuropathy. Neuroscience Letters, 659, 5459. PubMed ID: 28867590 doi:10.1016/j.neulet.2017.08.071

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macaluso, A., & De Vito, G. (2004). Muscle strength, power and adaptations to resistance training in old people. European Journal of Applied Physiology, 91(4), 450472. PubMed ID: 14639481 doi:10.1007/s00421-003-0991-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maffiuletti, N.A., Aagaard, P., Blazevich, A.J., Folland, J., Tillin, N., & Duchateau, J. (2016). Rate of force development: Physiological and methodological considerations. European Journal of Applied Physiology, 116(6), 10911116. PubMed ID: 26941023 doi:10.1007/s00421-016-3346-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathern, R.M., Anhorn, M., & Uygur, M. (2019). A novel method to assess rate of force relaxation: Reliability and comparisons with rate of force development across various muscles. European Journal of Applied Physiology, 119(1), 291300. PubMed ID: 30367259 doi:10.1007/s00421-018-4024-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIlroy, W.E., & Maki, B.E. (1993). Task constraints on foot movement and the incidence of compensatory stepping following perturbation of upright stance. Brain Research, 616(1–2), 3038. doi:10.1016/0006-8993(93)90188-S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, A.E.J., MacDougall, J.D., Tarnopolsky, M.A., & Sale, D.G. (1993). Sex differences in strength and muscle fiber characteristics. European Journal of Applied Physiology and Occupational Physiology, 66(3), 254262. PubMed ID: 8477683 doi:10.1007/BF00235103

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirkov, D.M., Nedeljkovic, A., Milanovic, S., & Jaric, S. (2004). Muscle strength testing: Evaluation of tests of explosive force production. European Journal of Applied Physiology, 91(2–3), 147154. doi:10.1007/s00421-003-0946-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97113. PubMed ID: 5146491 doi:10.1016/0028-3932(71)90067-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, B.M., Lavin, K.M., Many, G.M., Thalacker-Mercer, A., Merritt, E.K., Bickel, C.S., & Petrella, J.K. (2018). Human neuromuscular aging: Sex differences revealed at the myocellular level. Experimental Gerontology, 106, 116124. PubMed ID: 29481967 doi:10.1016/j.exger.2018.02.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, B.J., Ryan, E.D., Herda, T.J., Costa, P.B., Herda, A.A., & Cramer, J.T. (2014). Age-related changes in the rate of muscle activation and rapid force characteristics. Age, 36(2), 839849. PubMed ID: 24338233 doi:10.1007/s11357-013-9605-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uygur, M., de Freitas, P.B., & Barone, B.A. (2020). Rate of force development and relaxation scaling factors are highly sensitive to detect upper extremity motor impairments in multiple sclerosis. Journal of the Neurological Sciences, 408, 116500. doi:10.1016/j.jns.2019.116500

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uygur, M., de Freitas, P.B., & Jaric, S. (2010). Effects of varying the load force range and frequency on force coordination in static manipulation. Neuroscience Letters, 475(2), 115119. PubMed ID: 20350586 doi:10.1016/j.neulet.2010.03.063

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Cutsem, M., Duchateau, J., & Hainaut, K. (1998). Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. The Journal of Physiology, 513(1), 295305. doi:10.1111/j.1469-7793.1998.295by.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vandervoort, A.A. (1992). Effects of ageing on human neuromuscular function: Implications for exercise. Canadian Journal of Sport Sciences, 17(3), 178184. PubMed ID: 1325256

    • Search Google Scholar
    • Export Citation
  • Wierzbicka, M.M., Wiegner, A.W., Logigian, E.L., & Young, R.R. (1991). Abnormal most-rapid isometric contractions in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 54(3), 210216. PubMed ID: 2030347 doi:10.1136/jnnp.54.3.210

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, A., & Skelton, D.A. (1994). Applied physiology of strength and power in old age. International Journal of Sports Medicine, 15(03), 149151. doi:10.1055/s-2007-1021037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, F., Hedström, M., Cristea, A., Dalén, N., & Larsson, L. (2007). Effects of ageing and sex on contractile properties in human skeletal muscle and single fibres. Acta Physiologica, 190(3), 229241. PubMed ID: 17581136 doi:10.1111/j.1748-1716.2007.01699.x

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 148 148 59
Full Text Views 16 16 1
PDF Downloads 10 10 1