On Primitives in Motor Control

Click name to view affiliation

Mark L. Latash The Pennsylvania State University

Search for other papers by Mark L. Latash in
Current site
Google Scholar
PubMed
Close
*
Restricted access

The concept of primitives has been used in motor control both as a theoretical construct and as a means of describing the results of experimental studies involving multiple moving elements. This concept is close to Bernstein’s notion of engrams and level of synergies. Performance primitives have been explored in spaces of peripheral variables but interpreted in terms of neural control primitives. Performance primitives reflect a variety of mechanisms ranging from body mechanics to spinal mechanisms and to supraspinal circuitry. This review suggests that primitives originate at the task level as preferred time functions of spatial referent coordinates or at mappings from higher level referent coordinates to lower level, frequently abundant, referent coordinate sets. Different patterns of performance primitives can emerge depending, in particular, on the external force field.

Latash is with the Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA; and with the Moscow Institute of Physics and Technology, Dolgoprudny, Russia.

Latash (mll11@psu.edu) is corresponding author.
  • Collapse
  • Expand
  • Ambike, S., Mattos, D., Zatsiorsky, V.M., & Latash, M.L. (2016a). Synergies in the space of control variables within the equilibrium-point hypothesis. Neuroscience, 315, 150161. doi:10.1016/j.neuroscience.2015.12.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Mattos, D., Zatsiorsky, V.M., & Latash, M.L. (2016b). Unsteady steady-states: Central causes of unintentional force drift. Experimental Brain Research, 234, 35973611. doi:10.1007/s00221-016-4757-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Zhou, T., Zatsiorsky, V.M., & Latash, M.L. (2015). Moving a hand-held object: Reconstruction of referent coordinate and apparent stiffness trajectories. Neuroscience, 298, 336356. PubMed ID: 25896800 doi:10.1016/j.neuroscience.2015.04.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asaka, T., Wang, Y., Fukushima, J., & Latash, M.L. (2008). Learning effects on muscle modes and multi-mode synergies. Experimental Brain Research, 184, 323338. PubMed ID: 17724582 doi:10.1007/s00221-007-1101-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asaka, T., Yahata, K., Mani, H., & Wang, Y. (2011). Modulations of muscle modes in automatic postural responses induced by external surface translations. Journal of Motor Behavior, 43, 165172. PubMed ID: 21400330 doi:10.1080/00222895.2011.552079

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asanuma, H. (1973). Cerebral cortical control of movements. Physiologist, 16, 143166. PubMed ID: 4197405.

  • Berger, W., Trippel, M., Discher, M., & Dietz, V. (1992). Influence of subjects’ height on the stabilization of posture. Acta Otolaryngology, 112, 2230. doi:10.3109/00016489209100778

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, N.A. (1930). A new method of mirror cyclograph and its application towards the study of labor movements during work on a workbench. Hygiene, Safety and Pathology of Labor, # 5, p. 3–9, and # 6, p. 3-11. (in Russian).

    • Search Google Scholar
    • Export Citation
  • Bernstein, N.A. (1935). The problem of interrelation between coordination and localization. Archives of Biological Science, 38, 135 (in Russian).

    • Search Google Scholar
    • Export Citation
  • Bernstein, N.A. (1947). On the construction of movements. Moscow, Russia: Medgiz. (in Russian).

  • Bernstein, N.A. (1967). The co-ordination and regulation of movements. Oxford: Pergamon Press.

  • Bizzi, E., Giszter, S.F., Loeb, E., Mussa-Ivaldi, F.A., & Saltiel, P. (1995). Modular organization of motor behavior in the frog’s spinal cord. Trends in Neuroscience, 18, 442446. doi:10.1016/0166-2236(95)94494-P

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braido, P., & Zhang, X. (2004). Quantitative analysis of finger motion coordination in hand manipulative and gestic acts. Human Movement Science, 22, 661678. PubMed ID: 15063047

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cisek, P., & Kalaska, J.F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: Specification of multiple direction choices and final selection of action. Neuron, 45, 801814. PubMed ID: 15748854 doi:10.1016/j.neuron.2005.01.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coltz, J.D., Johnson, M.T.V., & Ebner, T.J. (1999). Cerebellar Purkinje cell simple spike discharge encodes movement velocity in primates during visuomotor arm tracking. Journal of Neuroscience, 19, 17821803. PubMed ID: 10024363 doi:10.1523/JNEUROSCI.19-05-01782.1999

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotterill, R.M. (2001). Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: Possible implications for cognition, consciousness, intelligence and creativity. Progress in Neurobiology, 64, 133. PubMed ID: 11250060 doi:10.1016/S0301-0082(00)00058-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danion, F., Schöner, G., Latash, M.L., Li, S., Scholz, J.P., & Zatsiorsky, V.M. (2003). A force mode hypothesis for finger interaction during multi-finger force production tasks. Biological Cybernetics, 88, 9198. PubMed ID: 12567224 doi:10.1007/s00422-002-0336-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danna-Dos-Santos, A., Degani, A.M., & Latash, M.L. (2008). Flexible muscle modes and synergies in challenging whole-body tasks. Experimental Brain Research, 189, 171187. PubMed ID: 18521583 doi:10.1007/s00221-008-1413-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danna-Dos-Santos, A., Slomka, K., Zatsiorsky, V.M., & Latash, M.L. (2007). Muscle modes and synergies during voluntary body sway. Experimental Brain Research, 179, 533550. PubMed ID: 17221222 doi:10.1007/s00221-006-0812-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Freitas, P.B., Freitas, S.M.S.F., Lewis, M.M., Huang, X., & Latash, M.L. (2018). Stability of steady hand force production explored across spaces and methods of analysis. Experimental Brain Research, 236, 15451562. PubMed ID: 29564506 doi:10.1007/s00221-018-5238-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desmurget, M., Richard, N., Harquel, S., Baraduc, P., Szathmari, A., Mottolese, C., & Sirigu, A. (2014). Neural representations of ethologically relevant hand/mouth synergies in the human precentral gyrus. Proceedings of the National Academy of Sciences USA, 111, 57185722. doi:10.1073/pnas.1321909111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedrichsen, J., Shadmehr, R., & Ivry, R.B. (2010). The coordination of movement: Optimal feedback control and beyond. Trends in Cognitive Science, 14, 3139. doi:10.1016/j.tics.2009.11.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominici, N., Ivanenko, Y.P., Cappellini, G., d’Avella, A., Mondì, V., Cicchese, M., . . . Lacquaniti, F. (2011). Locomotor primitives in newborn babies and their development. Science, 334, 997999. PubMed ID: 22096202 doi:10.1126/science.1210617

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enders, H., & Nigg, B.M. (2016). Measuring human locomotor control using EMG and EEG: Current knowledge, limitations and future considerations. European Journal of Sport Sciences, 16, 416426. doi:10.1080/17461391.2015.1068869

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evarts, E.V. (1968). Relation of pyramidal tract activity to force exerted during voluntary movement. Journal of Neurophysiology, 31, 1427. PubMed ID: 4966614 doi:10.1152/jn.1968.31.1.14

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farina, D., Merletti, R., & Enoka, R.M. (2014). The extraction of neural strategies from the surface EMG: An update. Journal of Applied Physiology, 117, 12151230. PubMed ID: 25277737 doi:10.1152/japplphysiol.00162.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B.J., Bulgakova, M.A., Beloozerova, I.N., Sirota, M.G., & Prilutsky, B.I. (2014). Body stability and muscle and motor cortex activity during walking with wide stance. Journal of Neurophysiology, 112, 504524. PubMed ID: 24790167 doi:10.1152/jn.00064.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1966). Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biophysics, 11, 565578.

    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1980). Superposition of motor programs. I. Rhythmic forearm movements in man. Neuroscience, 5, 8190.PubMed ID: 7366845 doi:10.1016/0306-4522(80)90073-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1986). Once more on the equilibrium-point hypothesis (λ –model) for motor control. Journal of Motor Behavior, 18, 1754. PubMed ID: 15136283 doi:10.1080/00222895.1986.10735369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (2015). Referent control of action and perception: Challenging conventional theories in behavioral science. New York: Springer.

  • Feldman, A.G. (2019). Indirect, referent control of motor actions underlies directional tuning of neurons. Journal of Neurophysiology, 121, 823841. PubMed ID: 30565957 doi:10.1152/jn.00575.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G., & Latash, M.L. (2005). Testing hypotheses and the advancement of science: Recent attempts to falsify the equilibrium-point hypothesis. Experimental Brain Research, 161, 91103. PubMed ID: 15490137 doi:10.1007/s00221-004-2049-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flash, T. (1987). The control of hand equilibrium trajectories in multi-joint arm movements. Biological Cybernetics, 57, 257274. PubMed ID: 3689835 doi:10.1007/BF00338819

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flash, T. (1989). Generation of reaching movements: Plausibility and implications of the equilibrium trajectory hypothesis. Brain Behavior and Evolution, 33, 6368. doi:10.1159/000115901

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flash, T., & Hochner, B. (2005). Motor primitives in vertebrates and invertebrates. Current Opinion in Neurobiology, 15, 660666. PubMed ID: 16275056 doi:10.1016/j.conb.2005.10.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgopoulos, A.P. (1986). On reaching. Annual Review of Neuroscience, 9, 147170. PubMed ID: 3518585 doi:10.1146/annurev.ne.09.030186.001051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., & Massey, J.T. (1982). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neuroscience, 2, 15271537. PubMed ID: 7143039 doi:10.1523/JNEUROSCI.02-11-01527.1982

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgopoulos, A.P., Lurito, J.T., Petrides, M., Schwartz, A.B., & Massey, J.T. (1989). Mental rotation of the neuronal population vector. Science, 243, 234236. PubMed ID: 2911737 doi:10.1126/science.2911737

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgopoulos, A.P., Schwartz, A.B., & Kettner, R.E. (1986). Neural population coding of movement direction. Science, 233, 14161419. PubMed ID: 3749885 doi:10.1126/science.3749885

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerasimenko, Y., Gorodnichev, R., Machueva, E., Pivovarova, E., Semyenov, D., Savochin, A., . . . Edgerton, V.R. (2010). Novel and direct access to the human locomotor spinal circuitry. Journal of Neuroscience, 30, 37003708. PubMed ID: 20220003 doi:10.1523/JNEUROSCI.4751-09.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giszter, S., Patil, V., & Hart, C. (2007). Primitives, premotor drives, and pattern generation: A combined computational and neuroethological perspective. Progress in Brain Research, 165, 323346. PubMed ID: 17925255

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giszter, S.F. (2015). Motor primitives– New data and future questions. Current Opinions in Neurobiology, 33, 156165. doi:10.1016/j.conb.2015.04.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giszter, S.F., & Hart, C.B. (2013). Motor primitives and synergies in the spinal cord and after injury–The current state of play. Annals of the New York Academy of Science, 1279, 114126. doi:10.1111/nyas.12065

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giszter, S.F., Mussa-Ivaldi, F.A., & Bizzi, E. (1993). Convergent force fields organized in the frog’s spinal cord. Journal of Neuroscience, 13, 467491. PubMed ID: 8426224 doi:10.1523/JNEUROSCI.13-02-00467.1993

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gomi, H., & Kawato, M. (1996). Equilibrium-point hypothesis examined by measured arm stiffness during multijoint movement. Science, 272, 117120. PubMed ID: 8600521 doi:10.1126/science.272.5258.117

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottlieb, G.L. (1998). Rejecting the equilibrium-point hypothesis. Motor Control, 2, 1012. PubMed ID: 9644273 doi:10.1123/mcj.2.1.10

  • Helms Tillery, S.I., Taylor, D.M., & Schwartz, A.B. (2003). Training in cortical control neuroprosthetic devices improves signal extraction from neuronal ensembles. Reviews in Neuroscience, 14, 107119. doi:10.1515/REVNEURO.2003.14.1-2.107

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hepp-Reymond, M., Kirkpatrick-Tanner, M., Gabernet, L., Qi, H.X., & Weber, B. (1999). Context-dependent force coding in motor and premotor cortical areas. Experimental Brain Research, 128, 123133. PubMed ID: 10473750 doi:10.1007/s002210050827

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiebert, G.W., & Pearson, K.G. (1999). Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate cat. Journal of Neurophysiology, 81, 758770. PubMed ID: 10036275 doi:10.1152/jn.1999.81.2.758

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinder, M.R., & Milner, T.E. (2003). The case for an internal dynamics model versus equilibrium point control in human movement. Journal of Physiology, 549, 953963. PubMed ID: 12717002 doi:10.1113/jphysiol.2002.033845

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, N., & Sternad, D. (2012). Dynamic primitives of motor behavior. Biological Cybernetics, 106, 727739. PubMed ID: 23124919 doi:10.1007/s00422-012-0527-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, N., & Sternad, D. (2013). Dynamic primitives in the control of locomotion. Frontiers in Computational Neuroscience, 7, 71. PubMed ID: 23801959 doi:10.3389/fncom.2013.00071

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holdefer, R.N., & Miller, L.E. (2002). Primary motor cortical neurons encode functional muscle synergies. Experimental Brain Research, 146, 233243. PubMed ID: 12195525 doi:10.1007/s00221-002-1166-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houk, J.C. (2005). Agents of the mind. Biological Cybernetics, 92, 427437. PubMed ID: 15915357 doi:10.1007/s00422-005-0569-8

  • Hughlings Jackson, J. (1889). On the comparative study of disease of the nervous system. British Medical Journal, 2(1494), 355362, August 17, 1889.

    • Search Google Scholar
    • Export Citation
  • Hultborn, H., Jankowska, E., & Lindstrom, S. (1971). Recurrent inhibition from motor axon collaterals of transmission in the Ia inhibitory pathway to motoneurons. Journal of Physiology, 215, 591612. PubMed ID: 4326306 doi:10.1113/jphysiol.1971.sp009487

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ilmane, N., Sangani, S., & Feldman, A.G. (2013). Corticospinal control strategies underlying voluntary and involuntary wrist movements. Behavioral and Brain Research, 236, 350358. doi:10.1016/j.bbr.2012.09.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingram, J.N., Sadeghi, M., Flanagan, J.R., & Wolpert, D.M. (2017). An error-tuned model for sensorimotor learning. PLoS Computational Biology, 13(12), e1005883. PubMed ID: 29253869 doi:10.1371/journal.pcbi.1005883

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanenko, Y.P., Cappellini, G., Dominici, N., Poppele, R.E., & Lacquaniti, F. (2005). Coordination of locomotion with voluntary movements in humans. Journal of Neuroscience, 25, 72387253. PubMed ID: 16079406 doi:10.1523/JNEUROSCI.1327-05.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanenko, Y.P., Cappellini, G., Poppele, R.E., & Lacquaniti, F. (2008). Spatiotemporal organization of alpha-motoneuron activity in the human spinal cord during different gaits and gait transitions. European Journal of Neuroscience, 27, 33513368. PubMed ID: 18598271 doi:10.1111/j.1460-9568.2008.06289.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanenko, Y.P., Poppele, R.E., & Lacquaniti, F. (2004). Five basic muscle activation patterns account for muscle activity during human locomotion. Journal of Physiology, 556, 267282. PubMed ID: 14724214 doi:10.1113/jphysiol.2003.057174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanenko, Y.P., Poppele, R.E., & Lacquaniti, F. (2006) Motor control programs and walking. Neuroscientist, 12, 339348. doi:10.1177/1073858406287987

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanenko, Y.P., Wright, W.G., Gurfinkel, V.S., Horak, F., & Cordo, P. (2006) Interaction of involuntary post-contraction activity with locomotor movements. Experimental Brain Research, 169, 255260. doi:10.1007/s00221-005-0324-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeneson, J.A., Taylor, J.S., Vigneron, D.B., Willard, T.S., Carvajal, L., Nelson, S.J., . . . Brown, T.R. (1990). 1H MR imaging of anatomical compartments within the finger flexor muscle of the human forearm. Magnetic Resonance Medicine, 15, 491496. doi:10.1002/mrm.1910150316

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jo, H.J., Lucassen, E., Huang, X., & Latash, M.L. (2017). Changes in multi-digit synergies and their feed-forward adjustments in multiple sclerosis. Journal of Motor Behavior, 49, 218228. PubMed ID: 27715488 doi:10.1080/00222895.2016.1169986

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kargo, W.J., Ramakrishnan, A., Hart, C.B., Rome, L.C., & Giszter, S.F. (2010). A simple experimentally based model using proprioceptive regulation of motor primitives captures adjusted trajectory formation in spinal frogs. Journal of Neurophysiology, 103, 573590. PubMed ID: 19657082. doi:10.1152/jn.01054.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.W., Shim, J.K., Zatsiorsky, V.M., & Latash, M.L. (2008). Finger interdependence: Linking the kinetic and kinematic variables. Human Movement Science, 27, 408422. PubMed ID: 18255182 doi:10.1016/j.humov.2007.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamoorthy, V., Latash, M.L., Scholz, J.P., & Zatsiorsky, V.M. (2003). Muscle synergies during shifts of the center of pressure by standing persons. Experimental Brain Research, 152, 281292. PubMed ID: 12904934 doi:10.1007/s00221-003-1574-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamoorthy, V., Latash, M.L., Scholz, J.P., & Zatsiorsky, V.M. (2004). Muscle modes during shifts of the center of pressure by standing persons: Effects of instability and additional support. Experimental Brain Research, 157, 1831. PubMed ID: 14985897 doi:10.1007/s00221-003-1812-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamoorthy, V., Scholz, J.P., & Latash, ML (2007). The use of flexible arm muscle synergies to perform an isometric stabilization task. Clinical Neurophysiology, 118, 525537. PubMed ID: 17204456 doi:10.1016/j.clinph.2006.11.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackner, J.R., & DiZio, P. (1994). Rapid adaptation to Coriolis force perturbations of arm trajectory. Journal of Neurophysiology, 72, 115. doi:10.1152/jn.1994.72.1.299

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2008). Synergy. New York: Oxford University Press.

  • Latash, M.L. (2010). Motor synergies and the equilibrium-point hypothesis. Motor Control, 14, 294322. PubMed ID: 20702893 doi:10.1123/mcj.14.3.294

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2012). The bliss (not the problem) of motor abundance (not redundancy). Experimental Brain Research, 217, 15. PubMed ID: 22246105 doi:10.1007/s00221-012-3000-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2018). Muscle co-activation: Definitions, mechanisms, and functions. Journal of Neurophysiology, 120, 88104. PubMed ID: 29589812 doi:10.1152/jn.00084.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Aruin, A.S., & Zatsiorsky, V.M. (1999). The basis of a simple synergy: Reconstruction of joint equilibrium trajectories during unrestrained arm movements. Human Movement Science, 18, 330. doi:10.1016/S0167-9457(98)00029-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Gottlieb, G.L. (1991). Reconstruction of elbow joint compliant characteristics during fast and slow voluntary movements. Neuroscience, 43, 697712 PubMed ID: 1922790 doi:10.1016/0306-4522(91)90328-L

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Huang, X. (2015). Neural control of movement stability: Lessons from studies of neurological patients. Neuroscience, 301, 3948. PubMed ID: 26047732 doi:10.1016/j.neuroscience.2015.05.075

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Scholz, J.F., Danion, F., & Schöner, G. (2001). Structure of motor variability in marginally redundant multi-finger force production tasks. Experimental Brain Research, 141, 153165. PubMed ID: 11713627 doi:10.1007/s002210100861

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Scholz, J.P., & Schöner, G. (2007). Toward a new theory of motor synergies. Motor Control, 11, 276308.

  • Latash, M.L., Shim, J.K., Smilga, A.V., & Zatsiorsky, V. (2005). A central back-coupling hypothesis on the organization of motor synergies: A physical metaphor and a neural model. Biological Cybernetics, 92, 186191. PubMed ID: 15739110 doi:10.1007/s00422-005-0548-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Zatsiorsky, V.M. (2016). Biomechanics and motor control: Defining central concepts. New York, NY: Academic Press.

  • Lebedev, M.A., & Nicolelis, M.A. (2006). Brain-machine interfaces: Past, present and future. Trends in Neuroscience, 29, 536546. doi:10.1016/j.tins.2006.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z.M., Latash, M.L., & Zatsiorsky, V.M. (1998). Force sharing among fingers as a model of the redundancy problem. Experimental Brain Research, 119, 276286. PubMed ID: 9551828 doi:10.1007/s002210050343

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Logothetis, N.K., & Sheinberg, D.L. (1996). Visual object recognition. Annual Reviews in Neuroscience, 19, 577621. doi:10.1146/annurev.ne.19.030196.003045

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, V., Reimann, H., & Schöner, G. (2019). A process account of the uncontrolled manifold structure of joint space variance in pointing movements. Biological Cybernetics, 113, 293307. PubMed ID: 30771072 doi:10.1007/s00422-019-00794-w

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, V., Scholz, J.P., & Schöner, G. (2009). Redundancy, self-motion, and motor control. Neural Computations, 21, 13711414. doi:10.1162/neco.2008.01-08-698

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meijer, O.G. (2001). Making things happen: An introduction to the history of movement science. In: M.L. Latash& V.M. Zatsiorsky (Eds.), Classics in movement science (pp. 158). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Miall, R.C., Weir, D.J., & Stein, J.F. (1987). Visuo-motor tracking during reversible inactivation of the cerebellum. Experimental Brain Research, 65, 455464. PubMed ID: 3556471 doi:10.1007/BF00236319

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mima, T., & Hallett, M. (1999). Corticomuscular coherence: A review. Journal of Clinical Neurophysiology, 16, 501511. PubMed ID: 10600018 doi:10.1097/00004691-199911000-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monaco, V., Ghionzoli, A., & Micera, S. (2010). Age-related modifications of muscle synergies and spinal cord activity during locomotion. Journal of Neurophysiology, 104, 20922102. PubMed ID: 20685924 doi:10.1152/jn.00525.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42, 223227. PubMed ID: 7262217 doi:10.1007/BF00236911

  • Morasso, P. (1983). Three-dimensional arm trajectories. Biological Cybernetics, 48, 187194. PubMed ID: 6639982 doi:10.1007/BF00318086

  • Musienko, P., Courtine, G., Tibbs, J.E., Kilimnik, V., Savochin, A., Garfinkel, A., . . . Gerasimenko, Y. (2012). Somatosensory control of balance during locomotion in decerebrated cat. Journal of Neurophysiology, 107, 20722082. PubMed ID: 22236709 doi:10.1152/jn.00730.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mussa-Ivaldi, F.A., & Bizzi, E. (2000). Motor learning through the combination of primitives. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 355, 17551769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mussa-Ivaldi, F.A., Giszter, S.F., & Bizzi, E. (1994). Linear combinations of primitives in vertebrate motor control. Proceedings of the National Academy of Science USA, 91, 75347538. doi:10.1073/pnas.91.16.7534

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nichols, T.R. (1989). The organization of heterogenic reflexes among muscles crossing the ankle joint in the decerebrate cat. Journal of Physiology, 410, 463477. PubMed ID: 2795487 doi:10.1113/jphysiol.1989.sp017544

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nichols, T.R. (1994). A biomechanical perspective on spinal mechanisms of coordinated muscular action: An architecture principle. Acta Anatomica, 151, 113. PubMed ID: 7879588 doi:10.1159/000147637

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nichols, T.R. (2002). Musculoskeletal mechanics: A foundation of motor physiology. Advances in Experimental and Medical Biology, 508, 473479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieder, A. (2005). Counting on neurons: The neurobiology of numerical competence. Nature Reviews in Neuroscience, 6, 177190. PubMed ID: 15711599 doi:10.1038/nrn1626

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Reviews in Neuroscience, 32, 185208. doi:10.1146/annurev.neuro.051508.135550

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, J.B. (2016). Human spinal motor control. Annual Reviews in Neuroscience, 39, 81101. doi:10.1146/annurev-neuro-070815-013913

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, J.B., & Kagamihara, Y. (1992). The regulation of disynaptic reciprocal Ia inhibition during co-contraction of antagonistic muscles in man. Journal of Physiology, 456, 373391. PubMed ID: 1338100 doi:10.1113/jphysiol.1992.sp019341

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, J.B., & Pierrot-Deseilligny, E. (1996). Evidence of facilitation of soleus-coupled Renshaw cells during voluntary co-contraction of antagonistic ankle muscles in man. Journal of Physiology, 493, 603611. PubMed ID: 8782120 doi:10.1113/jphysiol.1996.sp021407

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ollivier-Lanvin, K., Krupka, A.J., AuYong, N., Miller, K., Prilutsky, B.I., & Lemay, M.A. (2011). Electrical stimulation of the sural cutaneous afferent nerve controls the amplitude and onset of the swing phase of locomotion in the spinal cat. Journal of Neurophysiology, 105, 22972308. PubMed ID: 21389308 doi:10.1152/jn.00385.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overduin, S.A., d’Avella, A., Roh, J., Carmena, J.M., & Bizzi, E. (2015). Representation of muscle synergies in the primate brain. Journal of Neuroscience, 35, 1261512624. PubMed ID: 26377453 doi:10.1523/JNEUROSCI.4302-14.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H., Latash, E.M., Molkov, Y.I., Klishko, A.N., Frigon, A., DeWeerth, S.P., & Prilutsky, B.I. (2019). Cutaneous sensory feedback from paw pads affects lateral balance control during split-belt locomotion in the cat. Journal of Experimental Biology, 222, pii: jeb198648. doi:10.1242/jeb.198648

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., Wu, Y.-H., Lewis, M.M., Huang, X., & Latash, M.L. (2012). Changes in multi-finger interaction and coordination in Parkinson’s disease. Journal of Neurophysiology, 108, 915924. PubMed ID: 22552184 doi:10.1152/jn.00043.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., Zatsiorsky, V.M., & Latash, M.L. (2010). Optimality vs. variability: An example of multi-finger redundant tasks. Experimental Brain Research, 207, 119132. PubMed ID: 20949262 doi:10.1007/s00221-010-2440-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.W., Marino, H., Charles, S.K., Sternad, D., & Hogan, N. (2017). Moving slowly is hard for humans: Limitations of dynamic primitives. Journal of Neurophysiology, 118, 6983. PubMed ID: 28356477 doi:10.1152/jn.00643.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piovesan, D., Pierobon, A., DiZio, P., & Lackner, J.R. (2013). Experimental measure of arm stiffness during single reaching movements with a time-frequency analysis. Journal of Neurophysiology, 110, 24842496. PubMed ID: 23945781 doi:10.1152/jn.01013.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyakov, F., Drori, R., Ben-Shaul, Y., Abeles, M., & Flash, T. (2009). A compact representation of drawing movements with sequences of parabolic primitives. PLoS Computational Biology, 5(7), e1000427. doi:10.1371/journal.pcbi.1000427

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyakov, F., Stark, E., Drori, R., Abeles, M., Flash, T. (2009). Parabolic movement primitives and cortical states: Merging optimality with geometric invariance. Biological Cybernetics, 100, 159184. doi:10.1007/s00422-008-0287-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popescu, F.C., & Rymer, W.Z. (2000). End points of planar reaching movements are disrupted by small force pulses: An evaluation of the hypothesis of equifinality. Journal of Neurophysiology, 84, 26702679. PubMed ID: 11068008 doi:10.1152/jn.2000.84.5.2670

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prilutsky, B.I., & Zatsiorsky, V.M. (2002). Optimization-based models of muscle coordination. Exercise and Sport Science Reviews, 30, 3238. doi:10.1097/00003677-200201000-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raptis, H., Burtet, L., Forget, R., & Feldman, A.G. (2010). Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: Possible involvement of corticospinal pathways. Journal of Physiology, 588, 15511570. PubMed ID: 20231141 doi:10.1113/jphysiol.2009.186858

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reschechtko, S., & Latash, M.L. (2017). Stability of hand force production: I. Hand level control variables and multi-finger synergies. Journal of Neurophysiology, 118, 31523164. PubMed ID: 28904102 doi:10.1152/jn.00485.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santello, M., Bianchi, M., Gabiccini, M., Ricciardi, E., Salvietti, G., Prattichizzo, D., . . . Bicchi, A. (2016). Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands. Physics of Life Reviews, 17, 123. PubMed ID: 26923030 doi:10.1016/j.plrev.2016.02.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santuz, A., Akay, T., Mayer, W.P., Wells, T.L., Schroll, A., & Arampatzis, A. (2019). Modular organization of murine locomotor pattern in the presence and absence of sensory feedback from muscle spindles. Journal of Physiology, 597, 31473165. PubMed ID: 30916787 doi:10.1113/JP277515

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schieber, M.H. (2001). Constraints on somatotopic organization in the primary motor cortex. Journal of Neurophysiology, 86, 21252143. PubMed ID: 11698506 doi:10.1152/jn.2001.86.5.2125

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schieber, M.H., & Santello, M. (2004). Hand function: Peripheral and central constraints on performance. Journal of Applied Physiology, 96, 22932300. PubMed ID: 15133016 doi:10.1152/japplphysiol.01063.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., & Schöner, G. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research, 126, 289306. PubMed ID: 10382616 doi:10.1007/s002210050738

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schöner, G. (1995). Recent developments and problems in human movement science and their conceptual implications. Ecological Psychology, 8, 291314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, A.B. (1993). Motor cortical activity during drawing movements: Population representation during sinusoid tracing. Journal of Neurophysiology, 70, 2836. PubMed ID: 8360717 doi:10.1152/jn.1993.70.1.28

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sergio, L.E., & Kalaska, J.F. (1997). Systematic changes in directional tuning of motor cortex cell activity with hand location in the workspace during generation of static isometric forces in constant spatial directions. Journal of Neurophysiology, 78, 11701174. PubMed ID: 9307146 doi:10.1152/jn.1997.78.2.1170

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shadmehr, R., & Wise, S.P. (2005). The computational neurobiology of reaching and pointing. Cambridge, MA: MIT Press.

  • Shapkova, E.Y. (2004). Spinal locomotor capability revealed by electrical stimulation of the lumbar enlargement in paraplegic patients. In: M.L. Latash, M.F. Levin (Eds.), Progress in motor control-3 (pp. 253290). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Shapkova, E.Y., & Latash, M.L. (2005). The organization of central spinal generators in humans. In: N. Gantchev (Ed.), From basic motor control to functional recovery– IV (pp. 141149). Sofia, Bulgaria: Marin Drinov Academic Publishing House.

    • Search Google Scholar
    • Export Citation
  • Shapkova, E.Y., & Schömburg, E.D. (1999). Voluntary and stimulation-evoked locomotor activity in an incomplete paraplegic patient. In: G.M. Gancthev, N. Gantchev (Eds.), From basic motor control to functional recovery: Concepts, theories and models (pp. 477483). Sofia, Bulgaria: Prof. Marin Drynov Academic Publishing House.

    • Search Google Scholar
    • Export Citation
  • Shay, E.A., Chen, Q., Garcea, F.E., & Mahon, B.Z. (2019). Decoding intransitive actions in primary motor cortex using fMRI: Toward a componential theory of ‘action primitives’ in motor cortex. Cognitive Neuroscience, 10, 1319. PubMed ID: 29544397 doi:10.1080/17588928.2018.1453491

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, R.E., Iqbal, K., White, G., & Hutchinson, T.E. (2018). A systematic review on muscle synergies: From building blocks of motor behavior to a neurorehabilitation tool. Applied Bionics and Biomechanics, 2018, 3615368. PubMed ID: 29849756 doi:10.1155/2018/3615368

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroud, J.P., Porter, M.A., Hennequin, G., & Vogels, T.P. (2018). Motor primitives in space and time via targeted gain modulation in cortical networks. Nature Neuroscience, 21, 17741783. PubMed ID: 30482949 doi:10.1038/s41593-018-0276-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, H., & Sejnowski, T.J. (2015). Motor adaptation and generalization of reaching movements using motor primitives based on spatial coordinates. Journal of Neurophysiology, 113, 12171233. PubMed ID: 25429111 doi:10.1152/jn.00002.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thoroughman, K.A., & Shadmehr, R. (2000). Learning of action through adaptive combination of motor primitives. Nature, 407, 742747. PubMed ID: 11048720 doi:10.1038/35037588

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, L.H., & Macpherson, J.M. (2005). A limited set of muscle synergies for force control during a postural task. Journal of Neurophysiology, 93, 609613. PubMed ID: 15342720 doi:10.1152/jn.00681.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, L.H., & McKay, J.L. (2007). Neuromechanics of muscle synergies for posture and movement. Current Opinions in Neurobiology, 17, 622628. doi:10.1016/j.conb.2008.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todorov, E., & Jordan, M.I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5, 12261235. PubMed ID: 12404008 doi:10.1038/nn963

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres-Oviedo, G., & Ting, L.H. (2007). Muscle synergies characterizing human postural responses. Journal of Neurophysiology, 98, 21442156. PubMed ID: 17652413 doi:10.1152/jn.01360.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tresch, M.C., Cheung, V.C., & d’Avella, A. (2006). Matrix factorization algorithms for the identification of muscle synergies: Evaluation on simulated and experimental data sets. Journal of Neurophysiology, 95, 21992212. PubMed ID: 16394079 doi:10.1152/jn.00222.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tresch, M.C., & Jarc, A. (2009). The case for and against muscle synergies. Current Opinions in Neurobiology, 19, 601607. doi:10.1016/j.conb.2009.09.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turpin, N.A., Levin, M.F., Feldman, A.G. (2016). Implicit learning and generalization of stretch response modulation in humans. Journal of Neurophysiology, 115, 31863194. PubMed ID: 27052586 doi:10.1152/jn.01143.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turvey, M.T. (1990). Coordination. American Psychologist, 45, 938953. PubMed ID: 2221565 doi:10.1037/0003-066X.45.8.938

  • Vahdat, S., Maghsoudi, A., Haji Hasani, M., Towhidkhah, F., Gharibzadeh, S., & Jahed, M. (2006). Adjustable primitive pattern generator: A novel cerebellar model for reaching movements. Neuroscience Letters, 406, 232234. PubMed ID: 16930835 doi:10.1016/j.neulet.2006.07.038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valero-Cuevas, F.J. (2009). A mathematical approach to the mechanical capabilities of limbs and fingers. Advances in Experimental Medicine and Biology, 629, 619633. PubMed ID: 19227524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Duinen, H., & Gandevia, S.C. (2011). Constraints for control of the human hand. Journal of Physiology, 589, 55835593. PubMed ID: 21986205 doi:10.1113/jphysiol.2011.217810

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolpaw, J.R., Bedlack, R.S., Reda, D.J., Ringer, R.J., Banks, P.G., Vaughan, T.M., . . . Ruff, R.L. (2018). Independent home use of a brain-computer interface by people with amyotrophic lateral sclerosis. Neurology, 91, e258e267. PubMed ID: 29950436 doi:10.1212/WNL.0000000000005812

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yael, D., Tahary, O., Gurovich, B., Belelovsky, K., & Bar-Gad, I. (2019). Disinhibition of the nucleus accumbens leads to macro-scale hyperactivity consisting of micro-scale behavioral segments encoded by striatal activity. Journal of Neuroscience, 39, 58975909. PubMed ID: 31126998 doi:10.1523/JNEUROSCI.3120-18.2019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., Logan, D., & Giszter, S.F. (2019). Motor primitives are determined in early development and are then robustly conserved into adulthood. Proceedings of the National Academy of Sciences USA, 116, 1202512034.

    • Search Google Scholar
    • Export Citation
  • Zatsiorsky, V.M., Li, Z.M., & Latash, M.L. (2000). Enslaving effects in multi-finger force production. Experimental Brain Research, 131, 187195. PubMed ID: 10766271 doi:10.1007/s002219900261

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., Feldman, A.G., & Levin, M.F. (2018). Vestibular and corticospinal control of human body orientation in the gravitational field. Journal of Neurophysiology, 120, 30263041. PubMed ID: 30207862 doi:10.1152/jn.00483.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Scholz, J.P., Zatsiorsky, V.M., & Latash, M.L. (2008). What do synergies do? Effects of secondary constraints on multi-digit synergies in accurate force-production tasks. Journal of Neurophysiology, 99, 500513. PubMed ID: 18046000 doi:10.1152/jn.01029.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., Zatsiorsky, V.M., & Latash, M.L. (2015). Unintentional changes in the apparent stiffness of the multi-joint limb. Experimental Brain Research, 233, 29893004. PubMed ID: 26169103 doi:10.1007/s00221-015-4369-7

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 8678 1267 50
Full Text Views 138 43 9
PDF Downloads 116 27 10