The authors examined how the stability of the current total isometric force (FT) produced by four fingers is influenced by previous and expected voluntary changes in FT. The authors employed the synergy index obtained from the across-trial uncontrolled manifold analysis to quantify the stability of FT. The authors compared two tasks with similar histories of FT changes; one in which participants expected changes in FT in the future, and one in which they expected no changes in FT. The stability of FT was lower in the former task, indicating the existence of a novel type of anticipatory synergy adjustment. Disparate histories of FT changes yield inconsistent changes in stability, driven by individual differences in the covariation in the finger forces that leave FT invariant. Future research should focus on exploring these individual differences to better understand how previous and expected behavior changes influence the stability of the current motor behavior.