Touchscreen Pointing and Swiping: The Effect of Background Cues and Target Visibility

in Motor Control
View More View Less
  • 1 University of Groningen
  • | 2 Vrije Universiteit Amsterdam
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $195.00

By assessing the precision of gestural interactions with touchscreen targets, the authors investigate how the type of gesture, target location, and scene visibility impact movement endpoints. Participants made visually and memory-guided pointing and swiping gestures with a stylus to targets located in a semicircle. Specific differences in aiming errors were identified between swiping and pointing. In particular, participants overshot the target more when swiping than when pointing and swiping endpoints showed a stronger bias toward the oblique than pointing gestures. As expected, the authors also found specific differences between conditions with and without delays. Overall, the authors observed an influence on movement execution from each of the three parameters studied and uncovered that the information used to guide movement appears to be gesture specific.

Olthuis, Lemmink, and Caljouw are with the Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. van der Kamp is with the Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Olthuis (r.a.olthuis@umcg.nl) is corresponding author.
  • Appelle, S. (1972). Perception and discrimination as a function of stimulus orientation: The “oblique effect” in man and animals. Psychological Bulletin, 78(4), 266. PubMed ID: 4562947 doi:10.1037/h0033117

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bridgeman, B., Peery, S., & Anand, S. (1997). Interaction of cognitive and sensorimotor maps of visual space. Perception & Psychophysics, 59(3), 456469. PubMed ID: 9136275 doi:10.3758/BF03211912

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlton, L.G. (1981). Visual information: The control of aiming movements. The Quarterly Journal of Experimental Psychology Section A, 33(1), 8793. doi:10.1080/14640748108400771

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlton, L.G. (1992). Visual processing time and the control of movement. In L. Proteau& D.E. Elliott (Eds.), Vision and motor control (pp. 331). Amsterdam: Elsevier Science. doi:10.1016/S0166-4115(08)62008-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chua, R., & Elliott, D. (1993). Visual regulation of manual aiming. Human Movement Science, 12(4), 365401. doi:10.1016/0167-9457(93)90026-L

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cockburn, A., Ahlström, D., & Gutwin, C. (2012). Understanding performance in touch selections: Tap, drag and radial pointing drag with finger, stylus and mouse. International Journal of Human Computer Studies, 70(3):218233. doi:10.1016/j.ijhcs.2011.11.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Culham, J.C., & Valyear, K.F. (2006). Human parietal cortex in action. Current Opinion in Neurobiology, 16(2), 205212. PubMed ID: 16563735 doi:10.1016/j.conb.2006.03.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedrichsen, J., Werner, S., Schmidt, T., & Trommershäuser, J. (2004). Immediate spatial distortions of pointing movements induced by visual landmarks. Perception & Psychophysics, 66(1), 89103. PubMed ID: 15095943 doi:10.3758/BF03194864

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, D., Helsen, W.F., & Chua, R. (2001). A century later: Woodworth’s (1899) two-component model of goal-directed aiming. Psychological Bulletin, 127(3), 342357. PubMed ID: 11393300 doi:10.1037/0033-2909.127.3.342

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galati, G., Lobel, E., Vallar, G., Berthoz, A., Pizzamiglio, L., & Le Bihan, D. (2000). The neural basis of egocentric and allocentric coding of space in humans: A functional magnetic resonance study. Experimental Brain Research, 133(2), 156164. PubMed ID: 10968216 doi:10.1007/s002210000375

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentilucci, M., Daprati, E., Gangitano, M., & Toni, I. (1997). Eye position tunes the contribution of allocentric and egocentric information to target localization in human goal-directed arm movements. Neuroscience Letters, 222(2), 123126. PubMed ID: 9111744 doi:10.1016/S0304-3940(97)13366-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodale, M.A., & Milner, A.D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 2025. PubMed ID: 1374953 doi:10.1016/0166-2236(92)90344-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourtzelidis, P., Smyrnis, N., Evdokimidis, I., & Balogh, A. (2001). Systematic errors of planar arm movements provide evidence for space categorization effects and interaction of multiple frames of reference. Experimental Brain Research, 139(1), 5969. PubMed ID: 11482844 doi:10.1007/s002210100767

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenstein, J.S., & Arnaut, L.Y. (1988). Input devices. In M. Halander (Ed.), Handbook of human-computer interaction (pp. 495519). Amsterdam: Elsevier .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hay, L., & Redon, C. (2006). Response delay and spatial representation in pointing movements. Neuroscience Letters, 408(3), 194198. PubMed ID: 17027153. doi:10.1016/j.neulet.2006.08.080

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heath, M., & Westwood, D.A. (2003). Can a visual representation support the online control of memory-dependent reaching? Evidence from a variable spatial mapping paradigm. Motor Control, 7(4), 349365. doi:10.1123/mcj.7.4.349

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inkpen, K., Booth, K.S., & Klawe, M. (1996). Interaction styles for educational computer environments: A comparison of drag-and-drop vs. point-and-click (Technical report 96(20)). Vancouver, BC: Department of Computer Science, University of British Columbia.

    • Search Google Scholar
    • Export Citation
  • Kabbash, P., MacKenzie, I.S., & Buxton, W. (1993). Human performance using computer input devices in the preferred and non-preferred hands. In Proceedings of the SIGCHI conference on human factors in computing systems—CHI ‘93 (pp. 474481). New York, NY: ACM Press. doi:10.1145/169059.169414

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krigolson, O., Clark, N., Heath, M., & Binsted, G. (2007). The proximity of visual landmarks impacts reaching performance. Spatial Vision, 20(4), 317336. PubMed ID: 17594798 doi:10.1163/156856807780919028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krigolson, O., & Heath, M. (2004). Background visual cues and memory-guided reaching. Human Movement Science, 23(6), 861877. PubMed ID: 15664677 doi:10.1016/j.humov.2004.10.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurosu, M. (2017). Human-computer interaction: Interaction contexts: 19th International Conference, HCI International 2017, Vancouver, BC, Canada, July 9–14, 2017, Proceedings. Part IICham, Switzerland: Springer.

    • Search Google Scholar
    • Export Citation
  • Lee, S., & Zhai, S. (2009, April). The performance of touch screen soft buttons. Proceedings of the 27th International Conference on Human Factors in Computing Systems, CHI 2009 (pp. 309318). Boston, MA. doi:10.1145/1518701.1518750

    • Search Google Scholar
    • Export Citation
  • MacKenzie, I.S., Sellen, A., & Buxton, W.A.S. (1991). A comparison of input devices in element pointing and dragging tasks. In S.P. Robertson, G.M. Olson, & J.S. Olson (Eds.), Proceedings of the SIGCHI conference on human factors in computing systems reaching through technology—CHI ‘91 (pp. 161166). New York, NY: ACM Press. doi:10.1145/108844.108868

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milner, D., & Goodale, M. (2006). The visual brain in action (Vol. 27). Oxford, UK: Oxford University Press.

  • Obhi, S.S., & Goodale, M.A. (2005). The effects of landmarks on the performance of delayed and real-time pointing movements. Experimental Brain Research, 167(3), 335344. PubMed ID: 16041512 doi:10.1007/s00221-005-0055-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossetti, Y. (1998). Implicit short-lived motor representations of space in brain damaged and healthy subjects. Consciousness and Cognition, 7(3), 520558. PubMed ID: 9787059 doi:10.1006/ccog.1998.0370

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyrnis, N., Mantas, A., & Evdokimidis, I. (2007). “Motor oblique effect”: Perceptual direction discrimination and pointing to memorized visual targets share the same preference for cardinal orientations. Journal of Neurophysiology, 97(2), 10681077. PubMed ID: 17122322 doi:10.1152/jn.00515.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thaler, L., & Goodale, M.A. (2011). The role of online visual feedback for the control of target-directed and allocentric hand movements. Journal of Neurophysiology, 105(2), 846859. PubMed ID: 21160005 doi:10.1152/jn.00743.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Der Kamp, J., De Wit, M.M., & Masters, R.S.W. (2012). Left, right, left, right, eyes to the front! Müller-Lyer bias in grasping is not a function of hand used, hand preferred or visual hemifield, but foveation does matter. Experimental Brain Research, 218(1), 9198. PubMed ID: 22278110 doi:10.1007/s00221-012-3007-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westwood, D., Heath, M., & Roy, E. (2000). The effect of a pictorial illusion on closed-loop and open-loop prehension. Experimental Brain Research, 134(4), 456463. PubMed ID: 11081827 doi:10.1007/s002210000489

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yakimoff, N., Lansky, P., Mitrani, L., & Radil, T. (1989). Is the 45-oblique a third dominant direction. Acta Neurobiologicae Experimentalis, 49(1), 4750.

    • Search Google Scholar
    • Export Citation
  • Zaehle, T., Jordan, K., Wüstenberg, T., Baudewig, J., Dechent, P., & Mast, F.W. (2007). The neural basis of the egocentric and allocentric spatial frame of reference. Brain Research, 1137(1), 92103. PubMed ID: 17258693 doi:10.1016/j.brainres.2006.12.044

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 833 762 50
Full Text Views 30 19 0
PDF Downloads 20 8 0