An Open Data Set of Inertial, Magnetic, Foot–Ground Contact, and Electromyographic Signals From Wearable Sensors During Walking

in Motor Control
View More View Less
  • 1 Federal University of ABC
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $195.00

This study describes an open data set of inertial, magnetic, foot–ground contact, and electromyographic signals from wearable sensors during walking at different speeds. These data were acquired from 22 healthy adults using wearable sensors and walking at self-selected comfortable, fast and slow speeds, and standing still. All data are publicly available in the Internet (https://doi.org/10.6084/m9.figshare.7778255). In total, there are data of 9,661 gait strides. This data set also contains files with the instants of the gait events identified using the foot–ground contact sensors and notebooks exemplifying how to access and visualize the data. This data set gives the opportunity to all interested researchers to work with such data, for example, making tests of algorithms for gait event estimation against a common reference, possible.

The authors are with the Biomedical Engineering Program, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil.

Duarte (marcos.duarte@ufabc.edu.br) is corresponding author.

Supplementary Materials

    • Supplementary Material (PDF 1 MB)
  • Alexander, R.M.N. (2004). Bipedal animals and their differences from humans. Journal of Anatomy, 204(5), 321330. PubMed ID: 15198697 doi:10.1111/j.0021-8782.2004.00289.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukuchi, C.A., Fukuchi, R.K., & Duarte, M. (2019). Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Systematic Reviews, 8(1), 153. PubMed ID: 31248456 doi:10.1186/s13643-019-1063-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hermens, H.J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedure. Journal of Electromyography and Kinesiology, 10(5), 361374. PubMed ID: 11018445 doi:10.1016/S1050-6411(00)00027-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khandelwal, S., & Wickström, N. (2017). Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database. Gait & Posture, 51, 8490. PubMed ID: 27736735 doi:10.1016/j.gaitpost.2016.09.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llamas, C., González, M.A., Hernández, C., & Vegas, J. (2016). Open source platform for collaborative construction of wearable sensor datasets for human motion analysis and an application for gait analysis. Journal of Biomedical Informatics, 63, 249258. PubMed ID: 27593165 doi:10.1016/j.jbi.2016.08.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyons, G.M., Sinkjær, T., Burridge, J.H., & Wilcox, D.J. (2002). A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10(4), 260279. PubMed ID: 12611364 doi:10.1109/TNSRE.2002.806832

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rueterbories, J., Spaich, E.G., Larsen, B., & Andersen, O.K. (2010). Methods for gait event detection and analysis in ambulatory systems. Medical Engineering & Physics, 32(6), 545552. PubMed ID: 20435502 doi:10.1016/j.medengphy.2010.03.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, J.D. (2008). Foot drop: Where, why and what to do? Practical Neurology, 8(3), 158169. PubMed ID: 18502948 doi:10.1136/jnnp.2008.149393

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trojaniello, D., Cereatti, A., Pelosin, E., Avanzino, L., Mirelman, A., Hausdorff, J.M., & Della Croce, U. (2014). Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: Application to elderly, hemiparetic, parkinsonian and choreic gait. Journal of NeuroEngineering and Rehabilitation, 11, 152. PubMed ID: 25388296 doi:10.1186/1743-0003-11-152

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Truong, C., Barrois-Müller, R., Moreau, T., Provost, C., Vienne-Jumeau, A., Moreau, A., … Oudre, L. (2019). A data set for the study of human locomotion with inertial measurements units. Image Processing On Line, 9, 381390. doi:10.5201/ipol.2019.265

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westhout, F.D., Paré, L.S., & Linskey, M.E. (2007). Central causes of foot drop: Rare and underappreciated differential diagnoses. Journal of Spinal Cord Medicine, 30(1), 6266. PubMed ID: 17385271 doi:10.1080/10790268.2007.11753915

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whittle, M.W. (2007). Gait analysis: An introduction (4th ed.). Philadelphia, PA: Elsevier Ltd.

  • Winter, D.A. (1991). The biomechanics and motor control of human gait: Normal, elderly and pathological (2nd ed.). Waterloo, ON: University of Waterloo Press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 392 392 118
Full Text Views 6 6 1
PDF Downloads 4 4 1