Differences in Activity of the Brain Networks During Voluntary Motor Tasks Engaging the Local and Global Muscular Systems of the Lower Trunk

in Motor Control
View More View Less
  • 1 University of Physical Education
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $195.00

Low back pain constitutes a multidimensional problem of largely unknown origin. One of the recent theories explaining its frequent occurrence includes speculative statements on patterns of central nervous system activity associated with the control of so-called local and global muscles of the lower trunk. The objective of the study was to verify whether there is a difference in the activity of the brain during selective, voluntary contraction of the local and global abdominal muscles as assessed by functional MRI. Twenty healthy subjects participated. An experimental design was applied with repeated measurements of the blood-oxygen-level–dependent signal from the brain during voluntary contraction of the local and global abdominal muscles, performed in random order. Prior to registration, a 2-week training period was introduced, aiming to master the experimental motor tasks. The magnetic resonance imaging (MRI) data were processed using the FMRIB Software Library (Oxford, UK). Brain areas showing significant activations/deactivations were identified and averaged across all participants, and intercondition differential maps were computed. Areas of significant intercondition differences were linked to the corresponding anatomical structures and ascribed to the default mode functional brain network and to the sensorimotor network. Contraction of the local abdominal muscles elicited more pronounced activity of the brain cortex, basal ganglia, and cerebellum. This suggests that motor control of the abdominal musculature consists of two modes of brain activity and that control of the local muscles may be a more challenging task for the brain. Moreover, contraction of the local muscles elicited more distinct deactivation of the default mode network, which may have implications for diagnostics and therapy of low back pain.

Gnat, Dziewońska, Biały, and Wieczorek are with the Motion Analysis Laboratory, University of Physical Education, Katowice, Poland. Gnat is also with the Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.

Gnat (rafal.gnat@interia.pl) is corresponding author.
  • Apkarian, A.V., & Sosa, Y. (2004). Chronic back pain is associated with decreased prefrontal and thalamic grey matter density. Journal of Neuroscience, 24(46), 1041010415. PubMed ID: 15548656 doi:10.1523/JNEUROSCI.2541-04.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badiuk, B.W., Andersen, J.T., & McGill, S.M. (2014). Exercises to activate the deeper abdominal wall muscles: The Lewit: A preliminary study. Journal of Strength & Conditioning Research, 28(3), 856860. PubMed ID: 24345966 doi:10.1519/JSC.0b013e3182aac3f3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baliki, M.N., Geha, P.Y., Apkarian, A.V., & Chialvo, D.R. (2008). Beyond feeling: Chronic pain hurts the brain, disrupting the default-mode network dynamics. Journal of Neuroscience, 28(6), 13981403. PubMed ID: 18256259 doi:10.1523/JNEUROSCI.4123-07.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beith, I.D., Synnott, R.E., & Newman, S.A. (2001). Abdominal muscle activity during the abdominal hollowing manoeuvre in the four point kneeling and prone positions. Manual Therapy, 6(2), 8287. PubMed ID: 11414777 doi:10.1054/math.2000.0376

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergmark, A. (1989). Stability of the lumbar spine. A study in mechanical engineering. Acta Orthopaedica Scandinavica, Supplementum, 230(Suppl. 230), 154. PubMed ID: 2658468 doi:10.3109/17453678909154177

    • Search Google Scholar
    • Export Citation
  • Carr, L.J., Harrison, L.M., & Stephens, J.A. (1994). Evidence for bilateral innervation of certain homologous motoneurone pools in man. Journal of Physiology, 475(2), 217227. PubMed ID: 8021829 doi:10.1113/jphysiol.1994.sp020063

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Čeko, M., Shir, Y., Ouellet, J.A., Ware, M.A., Stone, L.S., & Seminowicz, D.A. (2015). Partial recovery of abnormal insula and dorsolateral prefrontal connectivity to cognitive networks in chronic low back pain after treatment. Human Brain Mapping, 36(6), 20752092. PubMed ID: 25648842 doi:10.1002/hbm.22757

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crow, W.T., & Willis, D.R. (2009). Estimating cost of care for patients with acute low back pain: A retrospective review of patient records. Journal of the American Osteopathic Association, 109(4), 229233. PubMed ID: 19369510

    • Search Google Scholar
    • Export Citation
  • Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., … Killiany, R.J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968980. PubMed ID: 16530430 doi:10.1016/j.neuroimage.2006.01.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., & Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 96739678. PubMed ID: 15976020 doi:10.1073/pnas.0504136102

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.B., Frith, C.D., & Frackowiak, R.S. (1994). Statistic parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2(4), 189210. doi:10.1002/hbm.460020402

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnat, R., Saulicz, E., & Miądowicz, B. (2012). Reliability of real-time ultrasound measurement of transversus abdominis thickness in healthy trained subjects. European Spine Journal, 21(8), 15081515. PubMed ID: 22327252 doi:10.1007/s00586-012-2184-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guell, X., & Schmahmann, J. (2020). Cerebellar functional anatomy: A didactic summary based on human fMRI evidence. Cerebellum, 19(1), 15. PubMed ID: 31707620 doi:10.1007/s12311-019-01083-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurfinkel, V.S. (1994). The mechanisms of postural regulation in man. Soviet Scientific Reviews, 7, 5989.

  • Hides, J.A., Jull, G.A., & Richardson, C.A. (2001). Long-term effect of specific stabilizing exercises for first-episode low back pain. Spine, 26(11), e243e248. PubMed ID: 11389408 doi:10.1097/00007632-200106010-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hides, J.A., Lambrecht, G., Richardson, C.A., Stanton, W.R., Armbrecht, G., Pruett, C., … Belavy, D.L. (2011). The effects of rehabilitation on the muscles of the trunk following prolonged bed rest. European Spine Journal, 20(5), 808818. PubMed ID: 20593204 doi:10.1007/s00586-010-1491-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hides, J.A., Stanton, W.R., McMahon, S., Sims, K., & Richardson, C.A. (2008). Effect of stabilization training on multifidus muscle cross-sectional area among young elite cricketers with low back pain. Journal of Orthopaedic & Sports Physical Therapy, 38(3), 101108. PubMed ID: 18349481 doi:10.2519/jospt.2008.2658

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, P. (2004). Lumbopelvic stability: A functional model of the biomechanics and motor control. In C. Richardson, P. Hodges, & J. Hides (Eds.), Therapeutic exercise for lumbopelvic stabilization. A motor control approach for the treatment and prevention of low back pain (2nd ed., p. 21). Edinburgh, Scotland: Churchill Livingstone.

    • Search Google Scholar
    • Export Citation
  • Hodges, P.W., & Richardson, C.A. (1997). Feedforward contraction of transversus abdominis is not influenced by the direction of arm movement. Experimental Brain Research, 114(2), 362370. PubMed ID: 9166925 doi:10.1007/PL00005644

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, P.W., & Richardson, C.A. (1998). Delayed postural contraction of transversus abdominis associated with the lower limb in people with low back pain. Journal of Spinal Disorders & Techniques, 11, 4656.

    • Search Google Scholar
    • Export Citation
  • Hodges, P.W., & Richardson, C.A. (1999). Transversus abdominis and the superficial abdominal muscles are controlled independently in a postural task. Neuroscience Letters, 265(2), 9194. PubMed ID: 10327176 doi:10.1016/S0304-3940(99)00216-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, J., & Gabel, P. (2013). Expanding Panjabi’s stability model to express movement: A theoretical model. Medical Hypotheses, 80(6), 692697. PubMed ID: 23561576 doi:10.1016/j.mehy.2013.02.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoy, D., March, L., Brooks, P., Blyth, F., Woolf, A., Bain, C., … Buchbinder, R. (2014). The global burden of low back pain: Estimates from the Global Burden of Disease 2010 study. Annals of the Rheumatic Diseases, 73(6), 968974. PubMed ID: 24665116 doi:10.1136/annrheumdis-2013-204428

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hungerford, B., Gilleard, W., & Hodges, P. (2003). Evidence of altered lumbopelvic muscle recruitment in the presence of sacroiliac joint pain. Spine, 28(14), 15931600. PubMed ID: 12865851

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, J.V., Henry, S.M., & Nagle, K.J. (2009). People with chronic low back pain exhibit decreased variability in the timing of their anticipatory postural adjustments. Behavioral Neuroscience, 123(2), 455458. PubMed ID: 19331469 doi:10.1037/a0014479

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jezzard, P., & Clare, S. (2001). Principles of nuclear magnetic resonance and MRI. In P. Jezzard, P.M. Matthews, & S.M. Smith (Eds.), Functional MRI: An introduction to methods (pp. 6792). Oxford, UK: Oxford University Press.

    • Search Google Scholar
    • Export Citation
  • Jull, G.A., & Richardson, C.A. (2000). Motor control problems in patients with spinal pain: A new direction for therapeutic exercise. Journal of Manipulative and Physiological Therapeutics, 23(2), 115117. PubMed ID: 10714539 doi:10.1016/S0161-4754(00)90079-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kihlstrom, J.F., Barnhardt, T.M., & Tataryn, D.J. (1992). The psychological unconscious: Fund, lost, and regained. The American Psychologist, 47(6), 788791. PubMed ID: 1616177 doi:10.1037/0003-066X.47.6.788

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., Mawla, I., Kong, J., Lee, J., Gerber, J., Ortiz, A., … Napadow V. (2019). Somatotopically specific primary somatosensory connectivity to salience and default mode networks encodes clinical pain. Pain, 160(7), 15941605. PubMed ID: 30839429 doi:10.1097/j.pain.0000000000001541

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S., Rainey, L., … Fox, P.T. (2000). Automated Talairach Atlas labels for functional brain mapping. Human Brain Mapping, 10(3), 120131. PubMed ID: 10912591 doi:10.1002/1097-0193(200007)10:3%3C120::AID-HBM30%3E3.0.CO;2-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W.A., Buchanan, T.S., & Rogers, M.W. (1987). Effects of arm acceleration on and behavioral conditions on the organization of postural adjustments during arm flexion. Experimental Brain Research, 66(2), 257270. PubMed ID: 3595773 doi:10.1007/BF00243303

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legrain, V., Crombez, G., Verhoeven, K., & Mouraux, A. (2011). The role of working memory in the attentional control of pain. Pain, 152(2), 453459. PubMed ID: 21238855 doi:10.1016/j.pain.2010.11.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Zhang, J., Yi, T., Tang, W., Wang, S., & Dong, J. (2014). Acupuncture treatment of chronic low back pain reverses an abnormal brain default mode network in correlation with clinical pain relief. Acupuncture in Medicine, 32(2), 102108. PubMed ID: 24280949 doi:10.1136/acupmed-2013-010423

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., … Mazoyer, B. (2001). A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society B: Biological Sciences, 356(1412), 12931322. PubMed ID: 11545704 doi:10.1098/rstb.2001.0915

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mongerson, C.R., Jennings, R.W., Borsook, D., Becerra, L., & Bajic, D. (2017). Resting-state functional connectivity in the infant brain: Methods, pitfalls, and potentiality. Frontiers in Pediatrics, 5, 159. PubMed ID: 28856131 doi:10.3389/fped.2017.00159

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moseley, G.L. (2005). Widespread brain activity during an abdominal task markedly reduced after pain physiology education: fMRI evaluation of a single patient with chronic low back pain. Australian Journal of Physiotherapy, 51(1), 4952. PubMed ID: 15748125 doi:10.1016/S0004-9514(05)70053-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moseley, G.L., & Hodges, P.W. (2006). Reduced variability of postural strategy prevents normalization of motor changes induced by back pain: A risk factor for chronic trouble? Behavioral Neuroscience, 120(2), 474476. PubMed ID: 16719709 doi:10.1037/0735-7044.120.2.474

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mouraux, A., Diukova, A., Lee, M.C., Wise, R.G., & Iannetti, G.D. (2011). A multisensory investigation of the functional significance of the ‘pain matrix’. Neuroimage, 54(3), 22372249. PubMed ID: 20932917 doi:10.1016/j.neuroimage.2010.09.084

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical-stimulation. Brain, 60(4), 389443. doi:10.1093/brain/60.4.389

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prichep, L.S., John, E.R., Howard, B., Merkin, H., & Hiesiger, E.M. (2011). Evaluation of the pain matrix using EEG source localization: A feasibility study. Pain Medicine, 12(8), 12411248. PubMed ID: 21810167 doi:10.1111/j.1526-4637.2011.01191.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., & Shulman, G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, C.A., Snijders, C.J., Hides, J.A., Damen, L., Pas, M.S., & Storm, J. (2002). The relation between the transversus abdominis muscles, sacroiliac joint mechanics, and low back pain. Spine, 27(4), 399405. PubMed ID: 11840107 doi:10.1097/00007632-200202150-00015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothwell, J.C., Thompson, P.D., Day, B.L., Dick, J.P.R., Kachi, T., & Cohen, J.M.A. (1987). Motor cortex stimulation in intact man: 1. General characteristics of EMG responses in different muscles. Brain, 110(5), 11731190. PubMed ID: 3676697 doi:10.1093/brain/110.5.1173

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tayashiki, K., Maeo, S., Usui, S., Miyamoto, N., & Kanehisa, H. (2016). Effect of abdominal bracing training on strength and power of trunk and lower limb muscles. European Journal of Applied Physiology, 116(9), 17031713. PubMed ID: 27377782 doi:10.1007/s00421-016-3424-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsao, H., Galea, M.P., & Hodges, P.W. (2008). Concurrent excitation of the opposite motor cortex during transcranial magnetic stimulation to activate the abdominal muscles. Journal of Neuroscience Methods, 171(1), 132139. PubMed ID: 18372045 doi:10.1016/j.jneumeth.2008.02.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsao, H., & Hodges, P.W. (2007). Immediate changes in feedforward postural adjustments following voluntary motor training. Experimental Brain Research, 181(4), 537546. PubMed ID: 17476489 doi:10.1007/s00221-007-0950-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tu, Y., Jung, M., Gollub, R.L., Napadow, V., Gerber, J., Ortiz, A., … Kong, J. (2019). Abnormal medial prefrontal cortex functional connectivity and its association with clinical symptoms in chronic low back pain. Pain, 160(6), 13081318. PubMed ID: 31107712 doi:10.1097/j.pain.0000000000001507

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, J.L., Patel, G.H., Fox, M.D., Snyder, A.Z., Baker, J.T., Van Essen, D.C., … Raichle, M.E. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447(7140), 8386. PubMed ID: 17476267 doi:10.1038/nature05758

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, B.F. (2000). The prevalence of low back pain: A systematic review of the literature from 1966 to 1998. Journal of Spinal Disorders, 13(3), 205217. doi:10.1097/00002517-200006000-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasserman, E.M., McShane, I.M., Hallett, M., & Cohen I.G. (1992). Noninvasive mapping of muscle representations in human motor cortex. Electroencephalography and Clinical Neurophysiology, 85(1), 18. PubMed ID: 1371738 doi:10.1016/0168-5597(92)90094-r

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolrich, M.W., Behrens, T.E., Beckmann, C.F., Jenkinson, M., & Smith, S.M. (2004). Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage, 21(4), 17321747. PubMed ID: 15050594 doi:10.1016/j.neuroimage.2003.12.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolrich, M.W., Ripley, B.D., Brady, M., & Smith, S.M. (2001). Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage, 14(6), 13701386. PubMed ID: 11707093 doi:10.1006/nimg.2001.0931

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, B., Jung, M., Tu, Y., Gollub, R., Lang, C., Ortiz, A., … Kong, J. (2019). Identifying brain regions associated with the neuropathology of chronic low back pain: A resting-state amplitude of low-frequency fluctuation study. British Journal of Anaesthesia, 123(2), e303e311. PubMed ID: 30948036 doi:10.1016/j.bja.2019.02.021

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 130 130 116
Full Text Views 7 7 6
PDF Downloads 5 5 4