Comparison of an Inertial Measurement Unit System and Baropodometric Platform for Measuring Spatiotemporal Parameters and Walking Speed in Healthy Adults

in Motor Control
View More View Less
  • 1 University of Pavia
  • 2 University of Tor Vergata
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $195.00

Spatiotemporal parameters of walking are used to identify gait impairments and provide a tailored therapy program. Baropodometric platforms are not often used for measuring spatiotemporal parameters and walking speed and it is required to determine accuracy. The aim of this study was to compare FreeMed® Platform gait outcomes with a validated inertial measurement unit. There were 40 healthy adults without walking impairments enrolled. Each subject walked along a 15-m walkway at self and slow self-selected speed wearing an inertial measurement unit on the FreeMed® Platform. Stride length and time, right and left stance, swing time, and walking speed were recorded. Walking speed, stride length, and step time showed a very high level of agreement at slow walking speed and a high and moderate level of agreement at normal walking speed. FreeMed® Platform is useful to assess gait outcomes and could improve the exercise prescription.

Correale and Pellino are co-first authors. Correale, Pellino, Marin, and Vandoni are with the Laboratory of Adapted Motor Activity, Department of Public Health, Experimental Medicine & Forensic Science, University of Pavia, Pavia, Italy. Pellino, Marin, and Febbi are with the University of Tor Vergata, Roma, Italy. Marin and Febbi are also with the Department of Rehabilitation, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic; and with the Laboratory for Rehabilitation, Medicine and Sport (LARMS), Rome, Italy.

Pellino (vittoria.carnevalepellino@unipv.it) is corresponding author.

Supplementary Materials

    • Supplementary Materials (PDF 251 KB)
  • Aminian, K., Najafi, B., Büla, C., Leyvraz, P.F., & Robert, P. (2002). Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. Journal of Biomechanics, 35(5), 689699. PubMed ID: 11955509 doi:10.1016/S0021-9290(02)00008-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumfeld, D., Baumfeld, T., da Rocha, R.L., Macedo, B., Raduan, F., Zambelli, R., … Nery, C. (2017). Reliability of baropodometry on the evaluation of plantar load distribution: A transversal study. BioMed Research International, 2017, 14. doi:10.1155/2017/5925137

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beauchet, O., Herrmann, F.R., Grandjean, R., Dubost, V., & Allali, G. (2008). Concurrent validity of SMTEC® footswitches system for the measurement of temporal gait parameters. Gait & Posture, 27(1), 156159. PubMed ID: 17291765 doi:10.1016/j.gaitpost.2006.12.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bland, J.M., & Altman, D.G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327(8476), 307310. PubMed ID: 2868172 doi:10.1016/S0140-6736(86)90837-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldas, R., Mundt, M., Potthast, W., Buarque de Lima Neto, F., & Markert, B. (2017). A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms. Gait & Posture, 57, 204210. PubMed ID: 28666178 doi:10.1016/j.gaitpost.2017.06.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curey, R.K., Ash, M.E., Thielman, L.O., & Barker, C.H. (2004). Proposed IEEE inertial systems terminology standard and other inertial sensor standards. In PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556) (pp. 8390). IEEE. doi:10.1109/PLANS.2004.1308978

    • Search Google Scholar
    • Export Citation
  • Cutlip, R.G., Mancinelli, C., Huber, F., & DiPasquale, J. (2000). Evaluation of an instrumented walkway for measurement of the kinematic parameters of gait. Gait & Posture, 12(2), 134138. PubMed ID: 10998610 doi:10.1016/S0966-6362(00)00062-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dadashi, F., Mariani, B., Rochat, S., Büla, C.J., Santos-Eggimann, B., & Aminian, K. (2013). Gait and foot clearance parameters obtained using shoe-worn inertial sensors in a large-population sample of older adults. Sensors, 14(1), 443457. doi:10.3390/s140100443

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R.H.T. (1978). Biomechanics and energetics of muscular exercise. By Rodolfo Margaria, illus, Clarendon Press, Oxford, England, 1976. $15.75. Muscle and Nerve, 1(2), 172172. doi:10.1002/mus.880010213

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Goto, M.M., & Furberg, R.D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. The International Journal of Behavioral Nutrition and Physical Activity, 12(1), 159. doi:10.1186/s12966-015-0314-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giacomozzi, C. (2010). Performance of plantar pressure measurement devices (PMDs): update on consensus activities. Ann Ist Super Sanità, 4, 343345. doi:10.4415/ANN_10_04_01

    • Search Google Scholar
    • Export Citation
  • Giansanti, D., Maccioni, G., Macellari, V., Costantini, G., & Carota, M. (2006). Towards the investigation of kinematic parameters from an integrated measurement unit for the classification of the rising from the chair. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society (Vol. 1, pp. 17421745). IEEE. doi:10.1109/IEMBS.2006.259276

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gimenez, F.V., Stadnik, A.M.W., & Maldaner, M. (2018). Analyses of baropodometry protocols through bibliometric research. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 38823885). IEEE. doi:10.1109/EMBC.2018.8513398

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hartmann, A., Luzi, S., Murer, K., de Bie, R.A., & de Bruin, E.D. (2009). Concurrent validity of a trunk tri-axial accelerometer system for gait analysis in older adults. Gait and Posture, 29(3), 444448. PubMed ID: 19070494 doi:10.1016/j.gaitpost.2008.11.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Himann, J.E., Cunningham, D.A., Rechnitzer, P.A., & Paterson, D.H. (1988). Age-related changes in speed of walking. Medicine & Science in Sports & Exercise, 20(2), 161166. PubMed ID: 3367751 doi:10.1249/00005768-198820020-00010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinkle, D.E., Wiersma, W., & Jurs Houghton Mifflin, S.G. (1990). Journal of Educational and Behavioral Statistics, 15(1), doi:10.3102/10769986015001084

    • Search Google Scholar
    • Export Citation
  • Hodgins, D. (2008). The importance of measuring human gait. Medical Device Technology, 19(5), 42, 4447. PubMed ID: 18947150

  • Jordan, K., Challis, J.H., & Newell, K.M. (2007). Walking speed influences on gait cycle variability. Gait and Posture, 26(1), 128134. PubMed ID: 16982195 doi:10.1016/j.gaitpost.2006.08.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharb, A., Saini, V., Jain, Y.K., & Dhiman, S. (2011). A review of gait cycle and its parameters. IJCEM International Journal of Computational Engineering & Management, 13, 22307893. Retrieved from www.IJCEM.orgIJCEMwww.ijcem.org

    • Search Google Scholar
    • Export Citation
  • Lim, S., & Lee, W. (2017). Comparison of accelerometer-based and treadmill-based analysis systems for measuring gait parameters in healthy adults. Journal of Physical Therapy Science, 29(4), 651653. PubMed ID: 28533603 doi:10.1589/jpts.29.651

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozano-Quijada, C., Poveda-Pagán, E.J., Segura-Heras, J.V., Hernández-Sánchez, S., & Prieto-Castelló, M.J. (2017). Changes in postural sway after a single global postural reeducation session in university students: A randomized controlled trial. Journal of Manipulative and Physiological Therapeutics, 40(7), 467476. 29037786 doi:10.1016/j.jmpt.2017.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luinge, H.J. (2002). Inertial sensing of human movement. PhD Thesis, Twente University Press (TUP).

  • Mariani, B., Hoskovec, C., Rochat, S., Büla, C., Penders, J., & Aminian, K. (2010). 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. Journal of Biomechanics, 43(15), 29993006. PubMed ID: 20656291 doi:10.1016/j.jbiomech.2010.07.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonough, A.L., Batavia, M., Chen, F.C., Kwon, S., & Ziai, J. (2001). The validity and reliability of the GAITRite system’s measurements: A preliminary evaluation. Archives of Physical Medicine and Rehabilitation, 82(3), 419425. PubMed ID: 11245768 doi:10.1053/apmr.2001.19778

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menz, H.B., Latt, M.D., Tiedemann, A., Kwan, M.M.S., & Lord, S.R. (2004). Reliability of the GAITRite® walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait and Posture, 20(1):2025. doi:10.1016/S0966-6362(03)00068-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merriaux, P., Dupuis, Y., Boutteau, R., Vasseur, P., & Savatier, X. (2017). A Study of Vicon System Positioning Performance. Sensors, 17(7), 1591. doi:10.3390/s17071591

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, Y., McGinnis, R.S., Seagers, K., Motl, R.W., Sheth, N., Wright, J.A., … Sosnoff, J.J. (2017). Monitoring gait in multiple sclerosis with novel wearable motion sensors. PLoS One, 12(2), e0171346. PubMed ID: 28178288 doi:10.1371/journal.pone.0171346

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myllymäki, A. (2018). Concurrent validity and repeatability of inertial sensor gait analysis system for the measurement of gait parameters of young healthy adults. Cogent Medicine, 5(1), 19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nüesch, C., Overberg, J.A., Schwameder, H., Pagenstert, G., & Mündermann, A. (2018). Repeatability of spatiotemporal, plantar pressure and force parameters during treadmill walking and running. Gait and Posture, 62(March), 117123. doi:10.1016/j.gaitpost.2018.03.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panero, E., Digo, E., Agostini, V., & Gastaldi, L. (2018). Comparison of different motion capture setups for gait analysis: Validation of spatio-temporal parameters estimation. In MeMeA 2018–2018 IEEE International Symposium on Medical Measurements and Applications, Proceedings, 16.

    • Search Google Scholar
    • Export Citation
  • Paoli, A., Sekulic, D., Messina, G., Palma, A., Gagey, P.M., Şahin, N., … Iovane, A. (2018). Postural control and balance in a cohort of healthy people living in Europe. Medicine, 97(52), e13835. doi:10.1097/MD.0000000000013835

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, G., & Woo, Y. (2015). Comparison between a center of mass and a foot pressure sensor system for measuring gait parameters in healthy adults. Journal of Physical Therapy Science, 27(10), 31993202. PubMed ID: 26644674 doi:10.1589/jpts.27.3199

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosário, J.L.P. (2014). A review of the utilization of baropodometry in postural assessment. Journal of Bodywork and Movement Therapies, 18(2), 215219. PubMed ID: 24725789 doi:10.1016/j.jbmt.2013.05.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salom-Moreno, J., Sánchez-Mila, Z., Ortega-Santiago, R., Palacios-Ceña, M., Truyol-Domínguez, S., & Fernández-de-las-Peñas, C. (2014). Changes in spasticity, widespread pressure pain sensitivity, and baropodometry after the application of dry needling in patients who have had a stroke: A randomized controlled trial. Journal of Manipulative and Physiological Therapeutics, 37(8), 569579. PubMed ID: 25199825 doi:10.1016/j.jmpt.2014.06.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwameder, H., Andress, M., Graf, E., & Strutzenberger, G. (2013). Validation of an IMU-System (gait-up) to identify gait parameters in normal and induced limping walking conditions, 14. Retrieved from https://ojs.ub.uni-konstanz.de/cpa/article/viewFile/6495/5862

    • Search Google Scholar
    • Export Citation
  • Seel, T., Raisch, J., & Schauer, T. (2014). IMU-based joint angle measurement for gait analysis. Sensors, 14(4), 68916909. PubMed ID: 24743160 doi:10.3390/s140406891

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washabaugh, E.P., Kalyanaraman, T., Adamczyk, P.G., Claflin, E.S., & Krishnan, C. (2017). Measuring gait parameters. Gait and Posture, 55, 8793. PubMed ID: 28433867 doi:10.1016/j.gaitpost.2017.04.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, K.E., Wittwer, J.E., & Feller, J.A. (2005). Validity of the GAITRite® walkway system for the measurement of averaged and individual step parameters of gait. Gait and Posture, 22(4), 317321. PubMed ID: 16274913 doi:10.1016/j.gaitpost.2004.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 756 756 45
Full Text Views 9 9 0
PDF Downloads 6 6 0