Utilizing the Variability of Practice in Physical Execution, Action Observation, and Motor Imagery: Similar or Dissimilar Mechanisms?

in Motor Control
View More View Less
  • 1 Shiraz University
  • | 2 Ferdowsi University of Mashhad
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $195.00

The simulation theory argues that physical execution, action observation, and imagery share similar underlying mechanisms. Accordingly, applying a high-level psychological variable (variability of practice) should have a similar effect on all three modes. To test this theory, a total of 90 right-handed students participated in this study and were randomly divided into variable versus constant groups in three practice conditions, including physical, observational, and imagery. After a pretest (10 random trials of the putting task), the participants completed 50 practice trials. The groups performed/observed/imagined the task in the variable (different distances to different goals) or constant (fixed distance and goal) practice conditions. Also, there was an extra variable group in the physical and observational conditions, deprived of watching the feedback from the action. The participants completed a retention test 24 hr after the training. The effect of practice variability was observed in physical and observational conditions, but was not seen in the imagery condition. The no-feedback groups did not perform significantly differently from the imagery groups. The reason could be the lack of actual visual feedback during imagery.

Fazeli is with the Department of Sport Sciences, Faculty of Psychology and Education, Shiraz University, Shiraz, Iran. Taheri and Kakhki are with the Department of Sport Science, Ferdowsi University of Mashhad, Mashhad, Iran.

Fazeli (david.fazeli@mail.um.ac.ir) is corresponding author.
  • Bandura, A. (1977). Social learning theory. Englewood Cliffs, NJ: Prentice-Hall.

  • Bird, A.M., & Rikli, R. (1983). Observational learning and practice variability. Research Quarterly for Exercise and Sport, 54(1), 14. doi:10.1080/02701367.1983.10605264

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calmels, C., Holmes, P., Lopez, E., & Naman, V. (2006). Chronometric comparison of actual and imaged complex movement patterns. Journal of Motor Behavior, 38(5), 339348. PubMed ID: 16968679 doi:10.3200/JMBR.38.5.339-348

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coelho, C.J., Nusbaum, H.C., Rosenbaum, D.A., & Fenn, K.M. (2012). Imagined actions aren’t just weak actions: Task variability promotes skill learning in physical practice but not in mental practice. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(6), 17591764. PubMed ID: 22545613 doi:10.1037/a0028065

    • Search Google Scholar
    • Export Citation
  • Debarnot, U., Abichou, K., Kalenzaga, S., Sperduti, M., & Piolino, P. (2015). Variable motor imagery training induces sleep memory consolidation and transfer improvements. Neurobiology of Learning and Memory, 119(2), 8592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Driskell, J.E., Copper, C., & Moran, A. (1994). Does mental practice enhance performance? Journal of Applied Psychology, 79(4), 481492. doi:10.1037/0021-9010.79.4.481

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentili, R., Han, C.E., Schweighofer, N., & Papaxanthis, C. (2010). Motor learning without doing: trial-by-trial improvement in motor performance during mental training. Journal of Neurophysiology, 104(2), 774783. PubMed ID: 20538766 doi:10.1152/jn.00257.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27(3), 377396. PubMed ID: 15736871 doi:10.1017/S0140525X04000093

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. Neuroimage, 14(1), S103S109. PubMed ID: 11373140 doi:10.1006/nimg.2001.0832

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S.W., Burton, A., Riedel, B., & Lynch, E. (2003). Sequence learning by action and observation: Evidence for separate mechanisms. British Journal of Psychology, 94(3), 355372. PubMed ID: 14511548 doi:10.1348/000712603767876271

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, T., Frank, C., & Schack, T. (2017). A systematic investigation of the effect of action observation training and motor imagery training on the development of mental representation structure and skill performance A systematic investigation of the effect of action observation training and motor imagery training on the development of mental representation structure and skill performance, 11, 499

    • Search Google Scholar
    • Export Citation
  • Krigolson, O., Van Gyn, G., Tremblay, L., & Heath, M. (2006). Is there “feedback” during visual imagery? Evidence from a specificity of practice paradigm. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 60(1), 24. PubMed ID: 16615715 doi:10.1037/cjep2006004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magill, R., & Anderson, D. (2014). Motor learning and control: Concepts and applications (10th ed.). New York, NY: McGraw-Hill.

  • McCormick, S.A., Causer, J., & Holmes, P.S. (2013). Active vision during action execution, observation and imagery: Evidence for shared motor representations. PloS One, 8(6), e67761. PubMed ID: 23825683 doi:10.1371/journal.pone.0067761

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proteau, L. (1992). On the specificity of learning and the role of visual information for movement control. In L. Proteau & D. Elliott (Eds.), Vision and motor control (pp. 67103). Amsterdam, the Netherland: Elsevier.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, R.A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82(4), 225. doi:10.1037/h0076770

  • Schmidt, R., & Lee, T. (2005). Motor control and learning: A behavioural emphasis (4th ed.). Champaign, IL: Human Kinetics.

  • Sherwood, D.E. (1996). The benefits of random variable practice for spatial accuracy and error detection in a rapid aiming task. Research Quarterly for Exercise and Sport, 67(1), 3543. PubMed ID: 8735992 doi:10.1080/02701367.1996.10607923

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, D.E., & Lee, T.D. (2003). Schema theory: Critical review and implications for the role of cognition in a new theory of motor learning. Research Quarterly for Exercise and Sport, 74(4), 376382. PubMed ID: 14768838 doi:10.1080/02701367.2003.10609107

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ste-Marie, D.M., Law, B., Rymal, A.M., Jenny, O., Hall, C., & McCullagh, P. (2012). Observation interventions for motor skill learning and performance: An applied model for the use of observation. International Review of Sport and Exercise Psychology, 5(2), 145176. doi:10.1080/1750984X.2012.665076

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toussaint, L., Robin, N., & Blandin, Y. (2010). On the content of sensorimotor representations after actual and motor imagery practice. Motor Control, 14(2), 159175. PubMed ID: 20484768 doi:10.1123/mcj.14.2.159

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Rossum, J.H. (1990). Schmidt’s schema theory: The empirical base of the variability of practice hypothesis: A critical analysis. Human Movement Science, 9(3), 387435. doi:10.1016/0167-9457(90)90010-B

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, M.M., & Rosenbaum, D.A. (2009). Deciding how to act is not achieved by watching mental movies. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1481. PubMed ID: 19803651 doi:10.1037/a0015799

    • Search Google Scholar
    • Export Citation
  • Wolpert, D.M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 358(1431), 593602. PubMed ID: 12689384 doi:10.1098/rstb.2002.1238

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, L., Manson, G.A., Tremblay, L., & Welsh, T.N. (2013). On the relationship between the execution, perception, and imagination of action. Behavioural Brain Research, 257, 242252. PubMed ID: 24100120 doi:10.1016/j.bbr.2013.09.045

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 279 279 51
Full Text Views 8 8 2
PDF Downloads 6 6 1