Effects of Varying Overground Walking Speeds on Lower-Extremity Muscle Synergies in Healthy Individuals

in Motor Control
View More View Less
  • 1 Université de Montréal
  • | 2 Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $195.00

The effects of walking speeds on lower-extremity muscle synergies (MSs) were investigated among 20 adults who walked 20 m at SLOW (0.6 ± 0.2 m/s), natural (NAT; 1.4 ± 0.1 m/s), and FAST (1.9 ± 0.1 m/s) speeds. Surface electromyography of eight lower-extremity muscles was recorded before extracting MSs using a nonnegative matrix factorization algorithm. Increasing walking speed tended to merge MSs associated with weight acceptance and limb deceleration, whereas reducing walking speed does not change the number and composition of MSs. Varying gait speed, particularly decreasing speed, may represent a gait training strategy needing additional attention given its effects on MSs.

Escalona, Bourbonnais, Le Flem, Duclos, and Gagnon are with the School of Rehabilitation, Université de Montréal, Montreal, Quebec, Canada. Escalona, Bourbonnais, Goyette, Le Flem, Duclos, and Gagnon are with the Pathokinesiology Laboratory, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Institut universitaire sur la réadaptation en déficience physique de Montréal, CIUSSS Centre-Sud-de-l’Ⓘle-de-Montréal, Montreal, Quebec, Canada.

Gagnon (dany.gagnon.2@umontreal.ca) is corresponding author.
  • Beauchet, O., Annweiler, C., Lecordroch, Y., Allali, G., Dubost, V., Herrmann, F.R., & Kressig, R.W. (2009). Walking speed-related changes in stride time variability: Effects of decreased speed. Journal of Neuroengineering and Rehabilitation, 6(1), 32. doi:10.1186/1743-0003-6-32

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cappellini, G., Ivanenko, Y.P., Poppele, R.E., & Lacquaniti, F. (2006). Motor patterns in human walking and running. Journal of Neurophysiology, 95(6), 34263437. PubMed ID: 16554517 doi:10.1152/jn.00081.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheung, V.C., d’Avella, A., Tresch, M.C., & Bizzi, E. (2005). Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. Journal of Neuroscience, 25(27), 64196434. PubMed ID: 16000633 doi:10.1523/JNEUROSCI.4904-04.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chvatal, S.A., & Ting, L.H. (2013). Common muscle synergies for balance and walking. Frontiers in Computational Neuroscience, 7, 48. PubMed ID: 23653605 doi:10.3389/fncom.2013.00048

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, D.J., Ting, L.H., Zajac, F.E., Neptune, R.R., & Kautz, S.A. (2010). Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. Journal of Neurophysiology, 103(2), 844857. PubMed ID: 20007501 doi:10.1152/jn.00825.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Den Otter, A., Geurts, A., Mulder, T., & Duysens, J. (2004). Speed related changes in muscle activity from normal to very slow walking speeds. Gait & Posture, 19(3), 270278. PubMed ID: 15125916 doi:10.1016/S0966-6362(03)00071-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devarajan, K., & Cheung, V.C. (2014). On nonnegative matrix factorization algorithms for signal-dependent noise with application to electromyography data. Neural Computation, 26(6), 11281168. PubMed ID: 24684448 doi:10.1162/NECO_a_00576

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghai, S., Ghai, I., & Effenberg, A.O. (2018). Effect of rhythmic auditory cueing on aging gait: A systematic review and meta-analysis. Aging and Disease, 9(5), 901. PubMed ID: 30271666 doi:10.14336/AD.2017.1031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagio, S., & Kouzaki, M. (2014). The flexible recruitment of muscle synergies depends on the required force-generating capability. Journal of Neurophysiology, 112(2), 316327. PubMed ID: 24790166 doi:10.1152/jn.00109.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanenko, Y.P., Grasso, R., Macellari, V., & Lacquaniti, F. (2002). Control of foot trajectory in human locomotion: Role of ground contact forces in simulated reduced gravity. Journal of Neurophysiology, 87(6), 30703089. PubMed ID: 12037209 doi:10.1152/jn.2002.87.6.3070

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivanenko, Y.P., Poppele, R.E., & Lacquaniti, F. (2004). Five basic muscle activation patterns account for muscle activity during human locomotion. The Journal of Physiology, 556(1), 267282. doi:10.1113/jphysiol.2003.057174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kibushi, B., Hagio, S., Moritani, T., & Kouzaki, M. (2018). Speed-dependent modulation of muscle activity based on muscle synergies during treadmill walking. Frontiers in Human Neuroscience, 12, 4. PubMed ID: 29416507 doi:10.3389/fnhum.2018.00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacquaniti, F., Ivanenko, Y.P., & Zago, M. (2012). Patterned control of human locomotion. The Journal of Physiology, 590(10), 21892199. PubMed ID: 22411012 doi:10.1113/jphysiol.2011.215137

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lajoie, Y., Jehu, D.A., Richer, N., & Tran, Y. (2016). Reaction time is slower when walking at a slow pace in young adults. Journal of Motor Behavior, 48(2), 153154. PubMed ID: 26111354 doi:10.1080/00222895.2015.1056767

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lalumiere, M., Villeneuve, C., Bellavance, C., Goyette, M., & Bourbonnais, D. (2020). Patterns of lower limb muscular activity and joint moments during directional efforts using a static dynamometer. BMC Biomedical Engineering, 2(1), 112. doi:10.1186/s42490-019-0035-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.J., & Hidler, J. (2008). Biomechanics of overground vs. treadmill walking in healthy individuals. Journal of Applied Physiology, 104(3), 747755. PubMed ID: 18048582 doi:10.1152/japplphysiol.01380.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, C., Killeen, T., Easthope, C.S., Curt, A., Bolliger, M., Linnebank, M., . . . Filli, L. (2019). Familiarization with treadmill walking: How much is enough? Scientific Reports, 9(1), 5232. PubMed ID: 30914746 doi:10.1038/s41598-019-41721-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mukaka, M.M. (2012). A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 24(3), 6971. PubMed ID: 23638278

    • Search Google Scholar
    • Export Citation
  • Neptune, R.R., Clark, D.J., & Kautz, S.A. (2009). Modular control of human walking: A simulation study. Journal of Biomechanics, 42(9), 12821287. PubMed ID: 19394023 doi:10.1016/j.jbiomech.2009.03.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishida, K., Hagio, S., Kibushi, B., Moritani, T., & Kouzaki, M. (2017). Comparison of muscle synergies for running between different foot strike patterns. PLoS One, 12(2), e0171535. PubMed ID: 28158258 doi:10.1371/journal.pone.0171535

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez-Nombela, S., Barroso, F., Torricelli, D., de Los Reyes-Guzmán, A., Del-Ama, A., Gómez-Soriano, J., . . . Gil-Agudo, Á.J.S.C. (2017). Modular control of gait after incomplete spinal cord injury: Differences between sides. Spinal Cord, 55(1), 79. PubMed ID: 27349606 doi:10.1038/sc.2016.99

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Safavynia, S., Torres-Oviedo, G., & Ting, L. (2011). Muscle synergies: Implications for clinical evaluation and rehabilitation of movement. Topics in Spinal Cord Injury Rehabilitation, 17(1), 1624. PubMed ID: 21796239 doi:10.1310/sci1701-16

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serrancolí, G., Monllau, J.C., & Font-Llagunes, J.M. (2016). Analysis of muscle synergies and activation–deactivation patterns in subjects with anterior cruciate ligament deficiency during walking. Clinical Biomechanics, 31, 6573. PubMed ID: 26493733 doi:10.1016/j.clinbiomech.2015.09.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, R.E., Iqbal, K., White, G., & Hutchinson, T.E. (2018). A systematic review on muscle synergies: From building blocks of motor behavior to a neurorehabilitation tool. Applied Bionics and Biomechanics, 2018. doi:https://doi.org/10.1155/2018/3615368

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tielke, A., Ahn, J., & Lee, H. (2019). Non-ideal behavior of a treadmill depends on gait phase, speed, and weight. Scientific Reports, 9(1), 112. doi:10.1038/s41598-019-49272-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres-Oviedo, G., Macpherson, J.M., & Ting, L.H. (2006). Muscle synergy organization is robust across a variety of postural perturbations. Journal of Neurophysiology, 96(3), 15301546. PubMed ID: 16775203 doi:10.1152/jn.00810.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, A.S., Gizzi, L., Farina, D., & Kersting, U.G. (2014). Motor modules of human locomotion: Influence of EMG averaging, concatenation, and number of step cycles. Frontiers in Human Neuroscience, 8, 335. PubMed ID: 24904375 doi:10.3389/fnhum.2014.00335

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ranganathan, R., & Krishnan, C. (2012). Extracting synergies in gait: Using EMG variability to evaluate control strategies. Journal of Neurophysiology, 108(5), 15371544. PubMed ID: 22723678 doi:10.1152/jn.01112.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valero-Cuevas, F.J., Venkadesan, M., & Todorov, E. (2009). Structured variability of muscle activations supports the minimal intervention principle of motor control. Journal of Neurophysiology, 102(1), 5968. PubMed ID: 19369362 doi:10.1152/jn.90324.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, W., Kay, B., Zosh, W., Duchon, A.P., & Sahau, S. (2001). Optic flow is used to control human walking. Nature Neuroscience, 4, 213216. doi:10.1038/84054

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, K., Lynskey, J.V., & Bosch, P.R. (2012). Walking speed in stroke survivors: Considerations for clinical practice. Topics in Geriatric Rehabilitation, 28(2), 113121. doi:10.1097/TGR.0b013e31823d9cba

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, R.L., Bevins, J.W., Pratt, D., Sackley, C.M., & Wing, A.M. (2016). Metronome cueing of walking reduces gait variability after a cerebellar stroke. Frontiers in Neurology, 7, 84. PubMed ID: 27313563 doi:10.3389/fneur.2016.00084

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 187 187 48
Full Text Views 149 149 4
PDF Downloads 47 47 2