Unprompted Alteration of Freely Chosen Movement Rate During Stereotyped Rhythmic Movement: Examples and Review

in Motor Control
View More View Less
  • 1 Aalborg University
  • | 2 The University of Queensland
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $195.00

Investigations of behavior and control of voluntary stereotyped rhythmic movement contribute to the enhancement of motor function and performance of disabled, sick, injured, healthy, and exercising humans. The present article presents examples of unprompted alteration of freely chosen movement rate during voluntary stereotyped rhythmic movements. The examples, in the form of both increases and decreases of movement rate, are taken from activities of cycling, finger tapping, and locomotion. It is described that, for example, strength training, changed power output, repeated bouts, and changed locomotion speed can elicit an unprompted alteration of freely chosen movement rate. The discussion of the examples is based on a tripartite interplay between descending drive, rhythm-generating spinal neural networks, and sensory feedback, as well as terminology from dynamic systems theory.

Hansen (eah@hst.aau.dk) is with Sport Sciences—Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; and the School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia.

  • Aagaard, P., Simonsen, E.B., Andersen, J.L., Magnusson, S.P., Halkjær-Kristensen, J., & Dyhre-Poulsen, P. (2000). Neural inhibition during maximal eccentric and concentric quadriceps contraction: Effects of resistance training. Journal of Applied Physiology, 89(6), 22492257. PubMed ID: 11090575 doi:10.1152/jappl.2000.89.6.2249

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, R. (2002). Energetics and optimization of human walking and running: The 2000 Raymond Pearl memorial lecture. The American Journal of Human Biology, 14(5), 641648. doi:10.1002/ajhb.10067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angeli, C.A., Edgerton, V.R., Gerasimenko, Y.P., & Harkema, S.J. (2014). Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain, 137(5), 13941409. PubMed ID: 24713270 doi:10.1093/brain/awu038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barroso, F.O., Torricelli, D., Moreno, J.C., Taylor, J., Gomez-Soriano, J., Bravo-Esteban, E., … Pons, J.L.. (2014). Shared muscle synergies in human walking and cycling. Journal of Neurophysiology, 112(8), 19841998. PubMed ID: 25057144 doi:10.1152/jn.00220.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caggiano, V., Leiras, R., Goni-Erro, H., Masini, D., Bellardita, C., Bouvier, J., … Kiehn, O. (2018). Midbrain circuits that set locomotor speed and gait selection. Nature, 553(7689), 455460. PubMed ID: 29342142 doi:10.1038/nature25448

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, T.J., Selvanayagam, V.S., Riek, S., & Semmler, J.G. (2011). Neural adaptations to strength training: Moving beyond transcranial magnetic stimulation and reflex studies. Acta Physiologica, 202(2), 119140. doi:10.1111/j.1748-1716.2011.02271.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, R.J., & Sillar, K.T. (2007). Modulation of a spinal locomotor network by metabotropic glutamate receptors. European Journal of Neuroscience, 26(8), 22572268. PubMed ID: 17894819 doi:10.1111/j.1460-9568.2007.05817.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colombo-Dougovito, A.M. (2017). The role of dynamic systems theory in motor development research: How does theory inform practice and what are the potential implications for autism spectrum disorder? International Journal on Disability and Human Development, 16(2), 141155.

    • Search Google Scholar
    • Export Citation
  • Danion, F., Varraine, E., Bonnard, M., & Pailhous, J. (2003). Stride variability in human gait: The effect of stride frequency and stride length. Gait & Posture, 18(1), 6977. PubMed ID: 12855302 doi:10.1016/S0966-6362(03)00030-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Luca, C.J., & Erim, Z. (1994). Common drive of motor units in regulation of muscle force. Trends in Neurosciences, 17(7), 299305. PubMed ID: 7524216

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedrich, F.J., & Warren, W.H., Jr. (1995). Why change gaits? Dynamics of the walk-run transition. The Journal of Experimental Psychology: Human Perception and Performance, 21(1), 183202. PubMed ID: 7707029 doi:10.1037/0096-1523.21.1.183

    • Search Google Scholar
    • Export Citation
  • Diedrich, F.J., & Warren, W.H., Jr. (1998). The dynamics of gait transitions: Effects of grade and load. Journal of Motor Behavior, 30(1), 6078. PubMed ID: 20037021 doi:10.1080/00222899809601323

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimitrijevic, M.R., Gerasimenko, Y., & Pinter, M.M. (1998). Evidence for a spinal central pattern generator in humans. Annals of the New York Academy of Sciences, 860(1), 360376. doi:10.1111/j.1749-6632.1998.tb09062.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Rienzo, F., Blache, Y., Kanthack, T.F., Monteil, K., Collet, C., & Guillot, A. (2015). Short-term effects of integrated motor imagery practice on muscle activation and force performance. Neuroscience, 305, 146156. PubMed ID: 26241339 doi:10.1016/j.neuroscience.2015.07.080

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duysens, J., & Van de Crommert, H.W.A.A. (1998). Neural control of locomotion; Part 1: The central pattern generator from cats to humans. Gait & Posture, 7(2), 131141. PubMed ID: 10200383 doi:10.1016/S0966-6362(97)00042-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, T.R., Martin, D.T., Stephens, B., & Withers, R.T. (2006). Power output during a professional men’s road-cycling tour. The International Journal of Sports Physiology and Performance, 1(4), 324335. PubMed ID: 19124890 doi:10.1123/ijspp.1.4.324

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edgerton, V.R., & Roy, R.R. (2009). Activity-dependent plasticity of spinal locomotion: Implications for sensory processing. Exercise and Sport Sciences Reviews, 37(4), 171178. PubMed ID: 19955866 doi:10.1097/JES.0b013e3181b7b932

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuelsen, A., Voigt, M., Madeleine, P., Kjær, P., Dam, S., Koefoed, N., & Hansen, E.A. (2018). Repeated bout rate enhancement is elicited by various forms of finger tapping. Frontiers in Neuroscience, 12, 526. PubMed ID: 30108479 doi:10.3389/fnins.2018.00526

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falvo, M.J., Sirevaag, E.J., Rohrbaugh, J.W., & Earhart, G.M.. (2010). Resistance training induces supraspinal adaptations: Evidence from movement-related cortical potentials. European Journal of Applied Physiology, 109(5), 923933. PubMed ID: 20306270 doi:10.1007/s00421-010-1432-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finkel, E., Etlin, A., Cherniak, M., Mor, Y., Lev-Tov, A., & Anglister, L. (2014). Neuroanatomical basis for cholinergic modulation of locomotor networks by sacral relay neurons with ascending lumbar projections. The Journal of Comparative Neurology, 522(15), 34373455. PubMed ID: 24752570 doi:10.1002/cne.23613

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fougère, M., Flaive, A., Frigon, A., & Ryczko, D. (2019). Descending dopaminergic control of brainstem locomotor circuits. Current Opinion in Physiology, 8, 3035. doi:10.1016/j.cophys.2018.12.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fregly, B.J., Zajac, F.E., & Dairaghi, C.A. (2000). Bicycle drive system dynamics: Theory and experimental validation. Journal of Biomechanical Engineering, 122(4), 446452. PubMed ID: 11036570 doi:10.1115/1.1286678

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frigon, A. (2017). The neural control of interlimb coordination during mammalian locomotion. Journal of Neurophysiology, 117(6), 22242241. PubMed ID: 28298308 doi:10.1152/jn.00978.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gad, P., Gerasimenko, Y., Zdunowski, S., Turner, A., Sayenko, D., Lu, D.C., & Edgerton, V.R. (2017). Weight bearing over-ground stepping in an exoskeleton with noninvasive spinal cord neuromodulation after motor complete paraplegia. Frontiers in Neuroscience, 11, 333. PubMed ID: 28642680 doi:10.3389/fnins.2017.00333

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia-Campmany, L., Stam, F.J., & Goulding, M. (2010). From circuits to behaviour: Motor networks in vertebrates. Current Opinion in Neurobiology, 20(1), 116125. PubMed ID: 20138753 doi:10.1016/j.conb.2010.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gosgnach, S. (2011). The role of genetically-defined interneurons in generating the mammalian locomotor rhythm. Integrative and Comparative Biology, 51(6), 903912. PubMed ID: 21576118 doi:10.1093/icb/icr022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gotshall, R.W., Bauer, T.A., & Fahrner, S.L. (1996). Cycling cadence alters exercise hemodynamics. International Journal of Sports Medicine, 17(1), 1722. PubMed ID: 8775571

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grillner, S. (2009). Pattern generation. In L.R. Squire (Ed.) Encyclopedia of Neuroscience (pp. 487494). London: Academic Press as an imprint of Elsevier.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grillner, S., & El Manira, A. (2020). Current principles of motor control, with special reference to vertebrate locomotion. Physiological Reviews, 100(1), 271320. PubMed ID: 31512990 doi:10.1152/physrev.00015.2019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haken, H., Kelso, J.A., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51(5), 347356. PubMed ID: 3978150 doi:10.1007/BF00336922

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hammond, G., & Gunasekera, S. (2008). Production of successive force impulses by the left and right hands. Journal of Motor Behavior, 40(5), 409416. PubMed ID: 18782716 doi:10.3200/JMBR.40.5.409-416

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, E.A. (2015). On voluntary rhythmic leg movement behaviour and control during pedalling. Acta Physiologica, 214(Suppl. 702), 118. doi:10.1111/apha.12529

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, E.A., Andersen, J.L., Nielsen, J.S., & Sjøgaard, G. (2002). Muscle fibre type, efficiency, and mechanical optima affect freely chosen pedal rate during cycling. Acta Physiologica Scandinavica, 176(3), 185194. PubMed ID: 12392498 doi:10.1046/j.1365-201X.2002.01032.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, E.A., Ebbesen, B.D., Dalsgaard, A, Mora-Jensen, M.H., & Rasmussen, J. (2015). Freely chosen index finger tapping frequency is increased in repeated bouts of tapping. Journal of Motor Behavior, 47(6), 490496. PubMed ID: 25811421doi:10.1080/00222895.2015.1015675

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, E.A., Jørgensen, L.V., Jensen, K., Fregly, B.J., & Sjøgaard, G. (2002). Crank inertial load affects freely chosen pedal rate during cycling. Journal of Biomechanics, 35(2): 277285. Erratum 35(11), 1521. doi:10.1016/S0021-9290(01)00182-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, E.A., Jørgensen, L.V., & Sjøgaard, G. (2004). A physiological counterpoint to mechanistic estimates of “internal power” during cycling at different pedal rates. European Journal of Applied Physiology, 91(4), 435442. PubMed ID: 14639482 doi:10.1007/s00421-003-0997-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, E.A., Kristensen, L.A.R., Nielsen, A.M., Voigt, M., & Madeleine, P. (2017). The role of stride frequency for walk-to-run transition in humans. Scientific Reports, 7(1), 2010. PubMed ID: 28515449 doi:10.1038/s41598-017-01972-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, E.A., & Ohnstad, A.E. (2008). Evidence for freely chosen pedalling rate during submaximal cycling to be a robust innate voluntary motor rhythm. Experimental Brain Research, 186(3), 365373. PubMed ID: 18071679 doi:10.1007/s00221-007-1240-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, E.A., Raastad, T., & Hallén, J. (2007). Strength training reduces freely chosen pedal rate during submaximal cycling. European Journal of Applied Physiology, 101(4), 419426. PubMed ID: 17638007 doi:10.1007/s00421-007-0515-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, E.A., & Smith, G. (2009). Factors affecting cadence choice during submaximal cycling and cadence influence on performance. The International Journal of Sports Physiology and Performance, 4(1), 317. PubMed ID: 19417224 doi:10.1123/ijspp.4.1.3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, E.A., Voigt, M., Kersting, U.G., & Madeleine, P. (2014). Frequency and pattern of rhythmic leg movement in humans after fatiguing exercises. Motor Control, 18(3), 297309. PubMed ID: 24457176 doi:10.1123/mc.2013-0044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, P.S., & Harris-Warrick, R.M. (1990). Neuromodulation of the crab pyloric central pattern generator by serotonergic/cholinergic proprioceptive afferents. The Journal of Neuroscience, 10(5), 14951512. PubMed ID: 2332793 doi:10.1523/JNEUROSCI.10-05-01495.1990

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawashima, R., Inoue, K., Sugiura, M., Okada, K., Ogawa, A., & Fukuda, H. (1999). A positron emission tomography study of self-paced finger movements at different frequencies. Neuroscience, 92(1), 107112. PubMed ID: 10392834 doi:10.1016/S0306-4522(98)00744-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keitel, A., Wojtecki, L., Hirschmann, J., Hartmann, C.J., Ferrea, S., Sudmeyer, M., & Schnitzler, A. (2013). Motor and cognitive placebo-/nocebo-responses in Parkinson’s disease patients with deep brain stimulation. Behavioural Brain Research, 250, 199205. PubMed ID: 23651878 doi:10.1016/j.bbr.2013.04.051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehn, O. (2006). Locomotor circuits in the mammalian spinal cord. Annual Review of Neuroscience, 29(1), 279306. doi:10.1146/annurev.neuro.29.051605.112910

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klarner, T., & Zehr, E.P. (2018). Sherlock Holmes and the curious case of the human locomotor central pattern generator. Journal of Neurophysiology, 120(1), 5377. PubMed ID: 29537920 doi:10.1152/jn.00554.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubo, K., Kanehisa, H., & Fukunaga, T. (2002). Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo. The Journal of Physiology, 538(1), 219226. doi:10.1113/jphysiol.2001.012703

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kung, S.M., Fink, P.W., Legg, S.J., Ali, A., & Shultz, S.P. (2018). What factors determine the preferred gait transition speed in humans? A review of the triggering mechanisms. Human Movement Science, 57, 112. PubMed ID: 29121506 doi:10.1016/j.humov.2017.10.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacquaniti, F., Ivanenko, Y.P., & Zago, M. (2012). Patterned control of human locomotion. The Journal of Physiology, 590(10), 21892199. PubMed ID: 22411012 doi:10.1113/jphysiol.2011.215137

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lochynski, D., Kaczmarek, D., Mrowczynski, W., Warchol, W., Majerczak, J., Karasinski, J., … Celichowski, J. (2016). Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training. Journal of Applied Physiology, 121(4), 858869. PubMed ID: 27539495

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, P.E., Sanderson, D.J., & Umberger, B.R. (2000). Factors affecting preferred rates of movement in cyclic activities. In V.M. Zatsiorsky (Ed.), Biomechanics in sport PErformance enhancement and injury prevention (1st ed., pp. 143160). London, UK: Blackwell Science Ltd.

    • Search Google Scholar
    • Export Citation
  • Masumoto, K., Nishizaki, Y., & Hamada, A. (2013). Effect of stride frequency on metabolic costs and rating of perceived exertion during walking in water. Gait & Posture, 38(2), 335339. PubMed ID: 23332190 doi:10.1016/j.gaitpost.2012.12.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCrea, D.A., & Rybak, I.A. (2008). Organization of mammalian locomotor rhythm and pattern generation. Brain Research Reviews, 57(1), 134146. PubMed ID: 17936363 doi:10.1016/j.brainresrev.2007.08.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minassian, K., Hofstoetter, U.S., Dzeladini, F., Guertin, P.A., & Ijspeert, A. (2017). The human central pattern generator for locomotion: Does it exist and contribute to walking? Neuroscientist, 23(6), 649663. PubMed ID: 28351197 doi:10.1177/1073858417699790

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mora-Jensen, M.H., Madeleine, P., & Hansen, E.A. (2017). Vertical finger displacement is reduced in index finger tapping during repeated bout rate enhancement. Motor Control, 21(4), 457467. PubMed ID: 28001481 doi:10.1123/mc.2016-0037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nilsson, J., Thorstensson, A., & Halbertsma, J. (1985). Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans. Acta Physiologica Scandinavica, 123(4), 457475. PubMed ID: 3993402 doi:10.1111/j.1748-1716.1985.tb07612.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patterson, R.P., & Moreno, M.I. (1990). Bicycle pedalling forces as a function of pedalling rate and power output. Medicine & Science in Sports & Exercise, 22(4), 512516. PubMed ID: 2402213 doi:10.1249/00005768-199008000-00016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perrier, J.F., & Cotel, F. (2015). Serotonergic modulation of spinal motor control. Current Opinion in Neurobiology, 33, 17. PubMed ID: 25553359 doi:10.1016/j.conb.2014.12.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ploutz, L.L., Tesch, P.A., Biro, R.L., & Dudley, G.A. (1994). Effect of resistance training on muscle use during exercise. Journal of Applied Physiology, 76(4), 16751681. PubMed ID: 8045847 doi:10.1152/jappl.1994.76.4.1675

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prochazka, A., & Ellaway, P. (2012). Sensory systems in the control of movement. Comprehensive Physiology, 2, 26152627. PubMed ID: 23720260

  • Rønnestad, B.R., Hansen, E.A., & Raastad, T. (2012). Strength training affects tendon cross-sectional area and freely chosen cadence differently in noncyclists and well-trained cyclists. Journal of Strength and Conditioning Research, 26(1), 158166. PubMed ID: 22201692 doi:10.1519/JSC.0b013e318218dd94

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardroodian, M., Madeleine, P., Mora-Jensen, M.H., & Hansen, E.A. (2016). Characteristics of finger tapping are not affected by heavy strength training. Journal of Motor Behavior, 48(3), 256263. PubMed ID: 26467635 doi:10.1080/00222895.2015.1089832

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardroodian, M., Madeleine, P., Voigt, M., & Hansen, E.A. (2014). Frequency and pattern of voluntary pedalling is influenced after one week of heavy strength training. Human Movement Science, 36, 5869. PubMed ID: 24929613 doi:10.1016/j.humov.2014.05.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardroodian, M., Madeleine, P., Voigt, M., & Hansen, E.A. (2015). Freely chosen stride frequencies during walking and running are not correlated with freely chosen pedalling frequency and are insensitive to strength training. Gait & Posture, 42(1), 6064. PubMed ID: 25943407 doi:10.1016/j.gaitpost.2015.04.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schöner, G., Haken, H., & Kelso, J.A. (1986). A stochastic theory of phase transitions in human hand movement. Biological Cybernetics, 53(4), 247257. PubMed ID: 3955100

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selinger, J.C., Wong, J.D., Simha, S.N., & Donelan, J.M. (2019). How humans initiate energy optimization and converge on their optimal gaits. Journal of Experimental Biology, 222(19), jeb198234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shik, M.L., Severin, F.V., & Orlovskii, G.N. (1966). Control of walking and running by means of electric stimulation of the mid-brain. Biophysics, 11, 756765.

    • Search Google Scholar
    • Export Citation
  • Shima, K., Tamura, Y., Tsuji, T., Kandori, A., & Sakoda, S. (2011). A CPG synergy model for evaluation of human finger tapping movements. Conference Proceedings IEEE Engineering in Medicine and Biology Society, 2011, 44434448.

    • Search Google Scholar
    • Export Citation
  • Slawinska, U., & Jordan, L.M. (2019). Serotonergic influences on locomotor circuits. Current Opinion in Physiology, 8, 6369.

  • Stoykov, M.E., Corcos, D.M., & Madhavan, S. (2017). Movement-based priming: Clinical applications and neural mechanisms. Journal of Motor Behavior, 49(1), 8897. PubMed ID: 28277966 doi:10.1080/00222895.2016.1250716

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taccola, G., Sayenko, D., Gad, P., Gerasimenko, Y., & Edgerton, V.R. (2018). And yet it moves: Recovery of volitional control after spinal cord injury. Progress in Neurobiology, 160, 6481. PubMed ID: 29102670 doi:10.1016/j.pneurobio.2017.10.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teo, W.P., Rodrigues, J.P., Mastaglia, F.L., & Thickbroom, G.W. (2013). Comparing kinematic changes between a finger-tapping task and unconstrained finger flexion-extension task in patients with Parkinson’s disease. Experimental Brain Research, 227(3), 323331. PubMed ID: 23686150 doi:10.1007/s00221-013-3491-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, M., Jakobsen, L.S., Jensen, M.K., Hyttel, M.K., Balle, H., & Hansen, E.A. (2019). Human walk-to-run transition in the context of the behaviour of complex systems. Human Movement Science, 67, 102509. PubMed ID: 31415962 doi:10.1016/j.humov.2019.102509

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, K., Glaser, J.I., Deng, L., Thompson, C.K., Stevenson, I.H., Wang, Q., … Kording, K.P. (2014). Serotonin affects movement gain control in the spinal cord. Journal of Neuroscience, 34(38), 1269012700. PubMed ID: 25232107 doi:10.1523/JNEUROSCI.1855-14.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zehr, E.P. (2005). Neural control of rhythmic human movement: The common core hypothesis. Exercise and Sport Sciences Reviews, 33(1), 5460. PubMed ID: 15640722

    • Search Google Scholar
    • Export Citation
  • Zehr, E.P., & Kido, A. (2001). Neural control of rhythmic, cyclical human arm movement: Task dependency, nerve specificity and phase modulation of cutaneous reflexes. The Journal of Physiology, 537(3), 10331045. doi:10.1113/jphysiol.2001.012878

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zentgraf, K., Lorey, B., Bischoff, M., Zimmermann, K., Stark, R., & Munzert, J. (2009). Neural correlates of attentional focusing during finger movements: A fMRI study. Journal of Motor Behavior, 41(6), 535541. PubMed ID: 19567364 doi:10.3200/35-08-091

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 45 45 35
Full Text Views 4 4 3
PDF Downloads 4 4 3