How Common Is the Exponential Decay Pattern of Motor Skill Acquisition? A Brief Investigation

in Motor Control
View More View Less
  • 1 University of Utah
  • | 2 University of Arkansas for Medical Sciences
  • | 3 University of Sydney
  • | 4 Arizona State University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $195.00

Motor performance is classically described as improving nonlinearly with practice, demonstrating rapid improvements early in practice with stabilization later, which is commonly modeled by exponential decay functions. However, retrospective analyses of our previously collected data challenge this theoretical model of motor skill acquisition, suggesting that a majority of individual learners actually demonstrate patterns of motor improvement different from this classical model. A convenience sample of young adults, older adults, and people with Parkinson disease trained on the same functional upper-extremity task. When fitting three-parameter exponential decay functions to individual participant data, the authors found that only 13.3% of young adults, 40.9% of older adults, and 66.7% of adults with Parkinson disease demonstrated this “classical” skill acquisition pattern. Thus, the three-parameter exponential decay pattern may not well-represent individuals’ skill acquisition of complex motor tasks; instead, more individualized analysis methods may be warranted for advancing a theoretical understanding of motor skill acquisition.

Olivier, Walter, Dibble, and Schaefer are with the Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA. Walter is also with the Department of Physical Therapy, University of Arkansas for Medical Sciences, Fayetteville, AR, USA. Schaefer is also with the School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA. Paul is with the Discipline of Physiotherapy, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.

Schaefer (sydney.schaefer@asu.edu) is a corresponding author.
  • Bates, B.T. (1996). Single-subject methodology: An alternative approach. Medicine and Science in Sports and Exercise, 28(5), 631638. PubMed ID: 9148096 doi:10.1097/00005768-199605000-00016

    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155159. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19565683

  • Deuschl, G., Toro, C., Zeffiro, T., Massaquoi, S., & Hallett, M. (1996). Adaptation motor learning of arm movements in patients with cerebellar disease. Journal of Neurology, Neurosurgery, and Psychiatry, 60(5), 515519. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8778255

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heathcote, A., Brown, S., & Mewhort, D.J.K. (2000). The power law repealed: The case for an exponential law of practice. Psychonomic Bulletin and Review, 7(2), 185207. PubMed ID: 10909131 doi:10.3758/BF03212979

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoehn, M.M., & Yahr, M.D. (1967). Parkinsonism: Onset, progression and mortality. Neurology, 17(5), 427442. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/6067254

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F.B., Nutt, J.G., & Nashner, L.M. (1992). Postural inflexibility in parkinsonian subjects. Journal of the Neurological Sciences, 111(1), 4658. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1402997

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jebsen, R.H., Taylor, N., Trieschmann, R.B., Trotter, M.J., & Howard, L.A. (1969). An objective and standardized test of hand function. Archives of Physical Medicine and Rehabilitation, 50, 311319.

    • Search Google Scholar
    • Export Citation
  • Lang, C.E., & Bastian, A.J. (1999). Cerebellar subjects show impaired adaptation of anticipatory EMG during catching. Journal of Neurophysiology, 82(5), 21082119. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10561391

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y.T., Mayer-Kress, G., & Newell, K.M. (2003). Beyond curve fitting: A dynamical systems account of exponential learning in a discrete timing task. Journal of Motor Behavior, 35(2), 197207. PubMed ID: 12711589 doi:10.1080/00222890309602133

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasreddine, Z.S., Phillips, N.A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., … Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695699. PubMed ID: 15817019 doi:10.1111/j.1532-5415.2005.53221.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, A., & Rosenbloom, P.S. (1981). Mechanisms of skill acquisition and the law of practice BT. In J.R. Anderson (Ed.), Cognitive skills and their acquisition.  Hillsdale, NJ: Erlbaum.

    • Search Google Scholar
    • Export Citation
  • Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97113. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/5146491

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olivier, G.N., Paul, S.S., Lohse, K.R., Walter, C.S., Schaefer, S.Y., & Dibble, L.E. (2019). Predicting motor sequence learning in people with Parkinson disease. Journal of Neurologic Physical Therapy, 43(1), 3341. PubMed ID: 30531384 doi:10.1097/NPT.0000000000000251

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H., & Schweighofer, N. (2017). Nonlinear mixed-effects model reveals a distinction between learning and performance in intensive reach training post-stroke. Journal of NeuroEngineering and Rehabilitation, 14(1), 21. doi:10.1186/s12984-017-0233-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paul, S.S., Dibble, L.E., Olivier, G.N., Walter, C., Duff, K., & Schaefer, S.Y. (2020). Dopamine replacement improves motor learning of an upper extremity task in people with Parkinson disease. Behavioural Brain Research, 377, 112213. PubMed ID: 31526767 doi:10.1016/j.bbr.2019.112213

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, S.Y. (2015). Preserved motor asymmetry in late adulthood: Is measuring chronological age enough? Neuroscience, 294, 5159. PubMed ID: 25772792 doi:10.1016/j.neuroscience.2015.03.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, S.Y., Dibble, L.E., & Duff, K. (2015). Efficacy and feasibility of functional upper extremity task-specific training for older adults with and without cognitive impairment. Neurorehabilitation and Neural Repair, 29(7), 636644. PubMed ID: 25416739 doi:10.1177/1545968314558604

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, S.Y., Hooyman, A., Duff, K., & Hackney, M. (2020). Using a timed motor task to predict one-year functional decline in amnestic mild cognitive impairment. Journal of Alzheimer’s Disease, 77(1), 5358. PubMed ID: 32651327 doi:10.3233/JAD-200518

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spiess, A.N., & Neumeyer, N. (2010). An evaluation of R2as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. BMC Pharmacology, 10, 6. PubMed ID: 20529254 doi:10.1186/1471-2210-10-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stergiou, N., & Decker, L.M. (2011). Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Human Movement Science, 30(5), 869888. doi:10.1016/j.humov.2011.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadden, K.P., Asis, K., Mang, C.S., Neva, J.L., Peters, S., Lakhani, B., & Boyd, L.A. (2017). Predicting motor sequence learning in individuals with chronic stroke. Neurorehabilitation and Neural Repair, 31(1), 95104. PubMed ID: 27511047 doi:10.1177/1545968316662526

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, C.S. (2017). Priming error detection to augment learning of an upper extremity motor task: A proof-of-principle study. Salt Lake City, UT: University of Utah. Retrieved from https://collections.lib.utah.edu/ark:/87278/s6sr3g6v

    • Search Google Scholar
    • Export Citation
  • Walter, C.S., Hengge, C.R., Lindauer, B.E., & Schaefer, S.Y. (2019). Declines in motor transfer following upper extremity task-specific training in older adults. Experimental Gerontology, 116, 1419. PubMed ID: 30562555 doi:10.1016/j.exger.2018.12.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yehene, E., Meiran, N., & Soroker, N. (2008). Basal ganglia play a unique role in task switching within the frontal-subcortical circuits: Evidence from patients with focal lesions. The Journal of Cognitive Neuroscience, 20(6), 10791093. PubMed ID: 18211234 doi:10.1162/jocn.2008.20077

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 34 34
PDF Downloads 18 18 18