Role of Post-Trial Visual Feedback on Unintentional Force Drift During Isometric Finger Force Production Tasks

in Motor Control
View More View Less
  • 1 Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
  • | 2 Department of Biomedical Engineering, Saveetha Engineering College, Chennai, India
Restricted access

A reduction in fingertip forces during a visually occluded isometric task is called unintentional drift. In this study, unintentional drift was studied for two conditions, with and without “epilogue.” We define epilogue as the posttrial visual feedback in which the outcome of the just-concluded trial is shown before the start of the next trial. For this study, 14 healthy participants were recruited and were instructed to produce fingertip forces to match a target line at 15% maximum voluntary contraction. The results showed a significant reduction in unintentional drift in the epilogue condition. This reduction is probably due to the difference in the shift in λ, the threshold of the tonic stretch reflex, the hypothetical control variable that the central controller can set.

  • Abolins, V., Stremoukhov, A., Walter, C., & Latash, M.L. (2020). On the origin of finger enslaving: Control with referent coordinates and effects of visual feedback. Journal of Neurophysiology, 124(6), 16251636. https://doi.org/10.1152/jn.00322.2020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, J.A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3(2), 111150. https://doi.org/10.1080/00222895.1971.10734898

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, J.A. (1987). Historical review and appraisal of research on the learning, retention, and transfer of human motor skills. Psychological Bulletin, 101(1), 4174. https://doi.org/10.1037/0033-2909.101.1.41

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Mattos, D., Zatsiorsky, V.M., & Latash, M.L. (2016a). Synergies in the space of control variables within the equilibrium-point hypothesis. Neuroscience, 315, 150161 https://doi.org/10.1016/j.neuroscience.2015.12.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Mattos, D., Zatsiorsky, V.M., & Latash, M.L. (2016b). The nature of constant and cyclic force production: Unintentional force-drift characteristics. Experimental Brain Research, 234(1), 197208. https://doi.org/10.1007/s00221-015-4453-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Mattos, D., Zatsiorsky, V.M., & Latash, M.L. (2016c). Unsteady steady-states: Central causes of unintentional force drift. Experimental Brain Research, 234(12), 35973611. https://doi.org/10.1007/s00221-016-4757-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Paclet, F., Zatsiorsky, V.M., & Latash, M.L. (2014). Factors affecting grip force: Anatomy, mechanics, and referent configurations. Experimental Brain Research, 232(4), 12191231. https://doi.org/10.1007/s00221-014-3838-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Zatsiorsky, V.M., & Latash, M.L. (2015). Processes underlying unintentional finger-force changes in the absence of visual feedback. Experimental Brain Research, 233(3), 711721. https://doi.org/10.1007/s00221-014-4148-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annet, J. (1969). Feedback and human behavior. Penguin.

  • Balamurugan, S., & Varadhan, S.K.M. (2020). Finger pressing task data collected with and without post-trial performance feedback. Data in Brief, 29, Article 105127. https://doi.org/10.1016/j.dib.2020.105127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences, 4(11), 423431. https://doi.org/10.1016/S1364-6613(00)01537-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (2009a). Origin and advances of the equilibrium-point hypothesis. In D. Sternad (Ed.), Progress in Motor Control: A Multidisciplinary Perspective (pp. 637643). Springer. https://doi.org/10.1007/978-0-387-77064-2_34

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (2009b). New insights into action—Perception coupling. Experimental Brain Research, 194(1), 3958. https://doi.org/10.1007/s00221-008-1667-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (2015). Referent control of action and perception: Challenging conventional theories in behavioral neuroscience. Springer-Verlag.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gritsenko, V., Yakovenko, S., & Kalaska, J.F. (2009). Integration of predictive feedforward and sensory feedback signals for online control of visually guided movement. Journal of Neurophysiology, 102(2), 914930. https://doi.org/10.1152/jn.91324.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansson, R.S., & Cole, K.J. (1992). Sensory-motor coordination during grasping and manipulative actions. Current Opinion in Neurobiology, 2(6), 815823. https://doi.org/10.1016/0959-4388(92)90139-C

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansson, R.S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56(3), 550564. https://doi.org/10.1007/BF00237997

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2008). Synergy. Oxford University Press.

  • Latash, M.L. (2010). Motor synergies and the equilibrium-point hypothesis. Motor Control, 14(3), 294322. https://doi.org/10.1123/mcj.14.3.294

  • Latash, M.L. (2016a). Towards physics of neural processes and behavior. Neuroscience & Biobehavioral Reviews, 69, 136146. https://doi.org/10.1016/j.neubiorev.2016.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2016b). Biological movement and laws of physics. Motor Control, 21(3), 327344. https://doi.org/10.1123/mc.2016-0016

  • Matthews, P.B.C. (1964). Muscle spindles and their motor control. Physiological Reviews, 44(2), 219288. https://doi.org/10.1152/physrev.1964.44.2.219

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattos, D., Schöner, G., Zatsiorsky, V.M., & Latash, M.L. (2015). Task-specific stability of abundant systems: Structure of variance and motor equivalence. Neuroscience, 310, 600615. https://doi.org/10.1016/j.neuroscience.2015.09.071

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M. (1976). Knowledge of results and motor learning. Exercise and Sport Science Reviews, 4(1), 195228. https://doi.org/10.1249/00003677-197600040-00008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsa, B., O’Shea, D.J., Zatsiorsky, V.M., & Latash, M.L. (2016). On the nature of unintentional action: A study of force/moment drifts during multifinger tasks. Journal of Neurophysiology, 116(2), 698708. https://doi.org/10.1152/jn.00180.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsa, B., Terekhov, A., Zatsiorsky, V.M., & Latash, M.L. (2017). Optimality and stability of intentional and unintentional actions: I. Origins of drifts in performance. Experimental Brain Research, 235(2), 481496. https://doi.org/10.1007/s00221-016-4809-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsa, B., Zatsiorsky, V.M., & Latash, M.L. (2017). Optimality and stability of intentional and unintentional actions: II. Motor equivalence and structure of variance. Experimental Brain Research, 235(2), 457470. https://doi.org/10.1007/s00221-016-4806-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilon, J.-F., De Serres, S.J., & Feldman, A.G. (2007). Threshold position control of arm movement with anticipatory increase in grip force. Experimental Brain Research, 181(1), 4967. https://doi.org/10.1007/s00221-007-0901-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poon, C., Chin-Cottongim, L.G., Coombes, S.A., Corcos, D.M., & Vaillancourt, D.E. (2012). Spatiotemporal dynamics of brain activity during the transition from visually guided to memory-guided force control. Journal of Neurophysiology, 108(5), 13351348. https://doi.org/10.1152/jn.00972.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reschechtko, S., Cuadra, C., & Latash, M.L. (2017). Force illusions and drifts observed during muscle vibration. Journal of Neurophysiology, 119(1), 326336. https://doi.org/10.1152/jn.00563.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reschechtko, S., & Latash, M.L. (2017). Stability of hand force production. I. Hand level control variables and multifinger synergies. Journal of Neurophysiology, 118(6), 31523164. https://doi.org/10.1152/jn.00485.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reschechtko, S., Zatsiorsky, V.M., & Latash, M.L. (2014). Stability of multifinger action in different state spaces. Journal of Neurophysiology, 112(12), 32093218. https://doi.org/10.1152/jn.00395.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salmoni, A.W., Schmidt, R.A., & Walter, C.B. (1984). Knowledge of results and motor learning: A review and critical reappraisal. Psychological Bulletin, 95(3), 355386. https://doi.org/10.1037/0033-2909.95.3.355

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanes, J.N., Mauritz, K.H., Evarts, E.V., Dalakas, M.C., & Chu, A. (1984). Motor deficits in patients with large-fiber sensory neuropathy. PNAS, 81(3), 979982. https://doi.org/10.1073/pnas.81.3.979

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schieber, M.H. (1991). Individuated finger movements of rhesus monkeys: A means of quantifying the independence of the digits. Journal of Neurophysiology, 65(6), 13811391. https://doi.org/10.1152/jn.1991.65.6.1381

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, R.A., & Lee, T.D. (1999). Motor control and learning: A behavioral emphasis (3rd ed.). Human Kinetics.

  • Shapkova, E.Y., Shapkova, A.L., Goodman, S.R., Zatsiorsky, V.M., & Latash, M.L. (2008). Do synergies decrease force variability? A study of single-finger and multi-finger force production. Experimental Brain Research, 188(3), 411425. https://doi.org/10.1007/s00221-008-1371-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slifkin, A.B., Vaillancourt, D.E., & Newell, K.M. (2000). Intermittency in the control of continuous force production. Journal of Neurophysiology, 84(4), 17081718. https://doi.org/10.1152/jn.2000.84.4.1708

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solnik, S., Qiao, M., & Latash, M.L. (2017). Effects of visual feedback and memory on unintentional drifts in performance during finger-pressing tasks. Experimental Brain Research, 235(4), 11491162. https://doi.org/10.1007/s00221-017-4878-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solnik, S., Reschechtko, S., Wu, Y.-H., Zatsiorsky, V.M., & Latash, M.L. (2015). Force-stabilizing synergies in motor tasks involving two actors. Experimental Brain Research, 233(10), 29352949. https://doi.org/10.1007/s00221-015-4364-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinnen, S.P. (1996). Information feedback for motor skill learning: A review. In H.N. Zelaznik (Ed.), Advances in motor learning and control. (pp. 3766). Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Vaillancourt, D.E., & Russell, D.M. (2002). Temporal capacity of short-term visuomotor memory in continuous force production. Experimental Brain Research, 145(3), 275285. https://doi.org/10.1007/s00221-002-1081-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaillancourt, D.E., Thulborn, K.R., & Corcos, D.M. (2003). Neural basis for the processes that underlie visually guided and internally guided force control in humans. Journal of Neurophysiology, 90(5), 33303340. https://doi.org/10.1152/jn.00394.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vander Linden, D.W., Cauraugh, J.H., & Greene, T.A. (1993). The effect of frequency of kinetic feedback on learning and isometric force production task in nondisabled subjects. Physical Therapy, 73(2), 7987. https://doi.org/10.1093/ptj/73.2.79

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelm, L., Zatsiorsky, V.M., & Latash, M.L. (2013). Equifinality and its violations in a redundant system: Multifinger accurate force production. Journal of Neurophysiology, 110(8), 19651973. https://doi.org/10.1152/jn.00461.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winstein, C.J., Pohl, P.S., Cardinale, C., Green, A., Scholtz, L., & Waters, C.S. (1996). Learning a partial-weight-bearing skill: Effectiveness of two forms of feedback. Physical Therapy, 76(9), 985993. https://doi.org/10.1093/ptj/76.9.985

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolpert, D.M., Miall, R.C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338347. https://doi.org/10.1016/S1364-6613(98)01221-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulf, G., & Shea, C.H. (2004). Understanding the role of augmented feedback: The good, the bad and the ugly. In A.M. Williams& N.J. Hodges (Eds.), Skill acquisition in sport (pp. 121144). Routledge.

    • Search Google Scholar
    • Export Citation
  • Zatsiorsky, V.M., Li, Z.M., & Latash, M.L. (2000) Enslaving effects in multi-finger force production. Experimental Brain Research, 131(2), 187195. https://doi.org/10.1007/s002219900261

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., Zhang, L., & Latash, M.L. (2015). Intentional and unintentional multi-joint movements: Their nature and structure of variance. Neuroscience, 289, 181193. https://doi.org/10.1016/j.neuroscience.2014.12.079

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1029 1029 183
Full Text Views 13 13 1
PDF Downloads 19 19 2