Implications of Optimal Feedback Control Theory for Sport Coaching and Motor Learning: A Systematic Review

in Motor Control
View More View Less
  • 1 Department of Sport Science, University of Innsbruck, Fürstenweg, Innsbruck, Austria
Restricted access

Best practice in skill acquisition has been informed by motor control theories. The main aim of this study is to screen existing literature on a relatively novel theory, Optimal Feedback Control Theory (OFCT), and to assess how OFCT concepts can be applied in sports and motor learning research. Based on 51 included studies with on average a high methodological quality, we found that different types of training seem to appeal to different control processes within OFCT. The minimum intervention principle (founded in OFCT) was used in many of the reviewed studies, and further investigation might lead to further improvements in sport skill acquisition. However, considering the homogenous nature of the tasks included in the reviewed studies, these ideas and their generalizability should be tested in future studies.

Supplementary Materials

    • Supplementary Material S1 (PDF 841 KB)
    • Supplementary Material S2 (PDF 478 KB)
  • Andel, S., Cole, M.H., & Pepping, G.-J. (2017). A systematic review on perceptual-motor calibration to changes in action capabilities. Human Movement Science, 51, 5971. https://doi.org/10.1016/j.humov.2016.11.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barris, S., Farrow, D., & Davids, K. (2014). Increasing functional variability in the preparatory phase of the takeoff improves elite springboard diving performance. Research Quarterly for Exercise and Sport, 85(1), 97106. https://doi.org/10.1080/02701367.2013.872220

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beerse, M., Bigelow, K.E., & Barrios, J.A. (2020). The patterning of local variability during the acquisition of a novel whole-body continuous motor skill in young adults. Experimental Brain Research, 238(9), 17971812. https://doi.org/10.1007/s00221-020-05840-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouffard, J., Bouyer, L.J., Roy, J.S., & Mercier, C. (2014). Tonic pain experienced during locomotor training impairs retention despite normal performance during acquisition. Journal of Neuroscience, 34(28), 91909195. https://doi.org/10.1523/JNEUROSCI.5303-13.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouffard, J., Bouyer, L.J., Roy, J.S., & Mercier, C. (2016). Pain induced during both the acquisition and retention phases of locomotor adaptation does not interfere with improvements in motor performance. Neural Plasticity. https://doi.org/10.1155/2016/8539096

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouffard, J., Bouyer, L.J., Salomoni, S.E., Mercier, C., Tucker, K., Roy, J.S., van den Hoorn, W., Hodges, P.W., & Mercier, C. (2018). Effect of experimental muscle pain on the acquisition and retention of locomotor adaptation: Different motor strategies for a similar performance. Journal of Neurophysiology,. 119(5), 16471657. https://doi.org/10.1152/jn.00411.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bootsma, R.J., & van Wieringen, P.C.W. (1990). Visual control of an attacking forehand drive in table tennis. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 2129. https://doi.org/10.1016/S0166-4115(08)62556-X

    • Search Google Scholar
    • Export Citation
  • Bruce, O., Moull, K., & Fischer, S. (2017). Principal components analysis to characterise fatigue-related changes in technique: Application to double under jump rope. Journal of Sports Sciences, 35(13), 13001309. https://doi.org/10.1080/02640414.2016.1221523

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casellato, C., Tagliabue, M., Pedrocchi, A., Papaxanthis, C., Ferrigno, G., & Pozzo, T. (2012). Reaching while standing in microgravity: A new postural solution to oversimplify movement control. Experimental Brain Research, 216(2), 203215. https://doi.org/10.1007/s00221-011-2918-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cisek, P., & Kalaska, J.F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269298. https://doi.org/10.1146/annurev.neuro.051508.135409

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cluff, T., Gharib, T., & Balasubramaniam, R. (2010). Attentional influences on the performance of secondary physical tasks during posture control. Experimental Brain Research, 203(4), 647658. https://doi.org/10.1007/s00221-010-2274-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cluff, T., Manos, A., Lee, T.D., & Balasubramaniam, R. (2012). Multijoint error compensation mediates unstable object control. Journal of Neurophysiology, 108(4), 11671175. https://doi.org/10.1152/jn.00691.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowe, M., & Sheppard, L. (2011). A general critical appraisal tool: An evaluation of construct validity. International Journal of Nursing Studies, 48(12), 15051516. https://doi.org/10.1016/j.ijnurstu.2011.06.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowe, M., Sheppard, L., & Campbell, A. (2012). Reliability analysis for a proposed critical appraisal tool demonstrated value for diverse research designs. Journal of Clinical Epidemiology, 65(4), 375383. https://doi.org/10.1016/j.jclinepi.2011.08.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davids, K., Button, C., & Bennett, S.J. (2008). Dynamics of skill acquisition: A constraints-led approach. Human Kinetics.

  • Davids, K., Glazier, P., Araújo, D., & Bartlett, R. (2003). Movement systems as dynamical systems: The functional role of variability and its implications for sports medicine. Sports Medicine, 33(4), 245260. https://doi.org/10.2165/00007256-200333040-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decker, L.M., Cignetti, F., & Stergiou, N. (2013). Executive function orchestrates regulation of task-relevant gait fluctuations. Gait & Posture, 38(3), 537540. https://doi.org/10.1016/j.gaitpost.2012.12.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Ercole, A.A., D’Ercole, C., Gobbi, M., & Gobbi, F. (2013). Technical, perceptual and motor skills in novice-expert water polo players. Journal of Strength and Conditioning Research, 27(12), 34363444. https://doi.org/10.1519/JSC.0b013e318298d48f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dingwell, J.B., John, J., & Cusumano, J.P. (2010). Do humans optimally exploit redundancy to control step variability in walking? PLoS Computational Biology, 6(7), Article e1000856. https://doi.org/10.1371/journal.pcbi.1000856

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dingwell, J.B., Joubert, J.E., Diefenthaeler, F., & Trinity, J.D. (2008). Changes in muscle activity and kinematics of highly trained cyclists during fatigue. IEEE Transactions on Biomedical Engineering, 55(11), 26662674. https://doi.org/10.1109/TBME.2008.2001130

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckert, N.R., Poston, B., & Riley, Z.A. (2016). Modulation of the cutaneous silent period in the upper-limb with whole-body instability. PLoS One, 11(3), Article e0151520. https://doi.org/10.1371/journal.pone.0151520

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enders, H., Maurer, C., Baltich, J., Nigg, B.M., Enders, H., Maurer, C., & Baltich, J. (2013). Task-oriented control of muscle coordination during cycling. Medicine & Science in Sports & Exercise, 45(12), 22982305. https://doi.org/10.1249/MSS.0b013e31829e49aa

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitts, P.M., & Posner, M.I. (1967). Human performanceBrooks/Cole.

  • Gibson, J.J. (1979). The Ecological Approach To Visual Perception. Psychology Press.

  • Haid, T., & Federolf, P.A. (2019). The effect of cognitive resource competition due to dual-tasking on the irregularity and control of postural movement components. Entropy, 21(1), 70. https://doi.org/10.3390/e21010070

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haid, T.H., Doix, A.-C.M., Nigg, B.M., & Federolf, P.A. (2018). Age effects in postural control analyzed via a principal component analysis of kinematic data and interpreted in relation to predictions of the Optimal Feedback Control Theory. Frontiers in Aging Neuroscience, 10, 22. https://doi.org/10.3389/fnagi.2018.00022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamacher, D., & Zech, A. (2018). Development of functional variability during the motor learning process of a complex cyclic movement. Journal of Biomechanics, 77, 124130. https://doi.org/10.1016/j.jbiomech.2018.07.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, C.M., & Wolpert, D.M. (1998). Signal-dependent noise determines motor planning. Nature, 394(6695), 780784. https://doi.org/10.1038/29528

  • Henry, F.M., & Rogers, D.E. (1960). Increased response latency for complicated movements and a “memory drum” theory of neuromotor reaction. Research Quarterly of the American Association for Health, Physical Education and Recreation, 31(3), 448458. https://doi.org/10.1080/10671188.1960.10762052

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinkel-Lipsker, J.W., & Hahn, M.E. (2018). Coordinative structuring of gait kinematics during adaptation to variable and asymmetric split-belt treadmill walking–A principal component analysis approach. Human Movement Science, 59, 178192. https://doi.org/10.1016/j.humov.2018.04.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iino, Y., Yoshioka, S., & Fukashiro, S. (2017). Uncontrolled manifold analysis of joint angle variability during table tennis forehand. Human Movement Science, 56, 98108. https://doi.org/10.1016/j.humov.2017.10.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kal, E., Ellmers, T., Diekfuss, J., Winters, M., & Van Der Kamp, J. (2021). Explicit motor learning interventions are still relevant for ACL injury rehabilitation: Do not put all your eggs in the implicit basket! British Journal of Sports Medicine, 12. https://doi.org/10.1136/bjsports-2020-103643

    • Search Google Scholar
    • Export Citation
  • Kent, J.A., Sommerfeld, J.H., Mukherjee, M., Takahashi, K.Z., & Stergiou, N. (2019). Locomotor patterns change over time during walking on an uneven surface. Journal of Experimental Biology, 222(14). https://doi.org/10.1242/jeb.202093

    • Search Google Scholar
    • Export Citation
  • Kiemel, T., Zhang, Y., & Jeka, J.J. (2011). Identification of neural feedback for upright stance in humans: Stabilization rather than sway minimization. Journal of Neuroscience, 31(42), 1514415153. https://doi.org/10.1523/JNEUROSCI.1013-11.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, M., Eckardt, N., Zech, A., & Hamacher, D. (2020). Compensation of stochastic time-continuous perturbations during walking in healthy young adults: An analysis of the structure of gait variability. Gait and Posture, 80, 253259. https://doi.org/10.1016/j.gaitpost.2020.05.040

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolobe, T.H.A., & Fagg, A.H. (2019). Robot reinforcement and error-based movement learning in infants with and without cerebral palsy. Physical Therapy, 99(6), 677688. https://doi.org/10.1093/ptj/pzz043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuramatsu, Y., Yamamoto, Y., & Izumi, S.-I. (2020). Sensorimotor strategies in individuals with poststroke hemiparesis when standing up without vision. Motor Control, 24(1), 150167. https://doi.org/10.1123/MC.2018-0098

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2012). The bliss (not the problem) of motor abundance (not redundancy). Experimental Brain Research, 217(1), 15. https://doi.org/10.1007/s00221-012-3000-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakhani, B., Van Ooteghem, K., Miyasike-Dasilva, V., Akram, S., Mansfield, A., & McIlroy, W.E. (2011). Does the movement matter? Determinants of the latency of temporally urgent motor reactions. Brain Research, 1416, 3543. https://doi.org/10.1016/j.brainres.2011.08.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D.N., Lishman, J.R., & Thomson, J.A. (1982). Regulation of gait in long jumping. Journal of Experimental Psychology: Human Perception and Performance, 8(3), 448459. https://doi.org/10.1037/0096-1523.8.3.448

    • Search Google Scholar
    • Export Citation
  • Lohse, K.R., Jones, M., Healy, A.F., & Sherwood, D.E. (2014). The role of attention in motor control. Journal of Experimental Psychology: General, 143(2), 930948. https://doi.org/10.1037/a0032817

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makhoul, P.J., Sinden, K.E., MacPhee, R.S., & Fischer, S.L. (2017). Relative contribution of lower body work as a biomechanical determinant of spine sparing technique during common paramedic lifting tasks. Journal of Applied Biomechanics, 33(2), 137143. https://doi.org/10.1123/jab.2016-0178

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manista, G.C., & Ahmed, A.A. (2012). Stability limits modulate whole-body motor learning. Journal of Neurophysiology, 107(7), 19521961. https://doi.org/10.1152/jn.00983.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maurer, C., von Tscharner, V., Samsom, M., Baltich, J., & Nigg, B.M. (2013). Extraction of basic movement from whole-body movement, based on gait variability. Physiological Reports, 1(3), 110. https://doi.org/10.1002/phy2.49

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell, J.P., Masters, R.S.W., & Eves, F.F. (2003). The role of working memory in motor learning and performance. Consciousness and Cognition, 12(3), 376402. https://doi.org/10.1016/S1053-8100(03)00005-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaels, C.F., & Carello, C. (1981). Direct perception. Prentice-Hall, Inc.

  • Moher, D. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264. https://doi.org/10.7326/0003-4819-151-4-200908180-00135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakano, N., Inaba, Y., Fukashiro, S., & Yoshioka, S. (2020). Basketball players minimize the effect of motor noise by using near-minimum release speed in free-throw shooting. Human Movement Science, 70, Article 102583. https://doi.org/10.1016/j.humov.2020.102583

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M. (1985). Coordination, control and skill. Differing Perspectives in Motor Learning, Memory, and Control, 27, 295317.

  • Newell, K.M. (1986). Constraints on the development of coordination. In M.G. Wade& H.T.A. Whiting (Ed.), Motor development in children: Aspects of coordination and control (pp. 341360). Martinus Nijhoff Publishers.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, N., & Sanders, R.H. (2014). Kinematic and kinetic evidence for functional lateralization in a symmetrical motor task: The water polo eggbeater kick. Experimental Brain Research, 233(3), 947957. https://doi.org/10.1007/s00221-014-4166-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-W., & Sternad, D. (2015). Robust retention of individual sensorimotor skill after self-guided practice. Journal of Neurophysiology, 113(7), 26352645. https://doi.org/10.1152/jn.00884.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfaff, L.M., & Cinelli, M.E. (2018). The effects of sport specific training of rugby players on avoidance behaviours during a head-on collision course with an approaching person. Human Movement Science, 62, 105115. https://doi.org/10.1016/j.humov.2018.09.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, Q.-C., & Hicheur, H. (2009). On the open-loop and feedback processes that underlie the formation of trajectories during visual and nonvisual locomotion in humans. Journal of Neurophysiology, 102(5), 28002815. https://doi.org/10.1152/jn.00284.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinder, R.A., Davids, K., Renshaw, I., & Araújo, D. (2011). Representative learning design and functionality of research and practice in sport. Journal of Sport and Exercise Psychology, 33(1), 146155. https://doi.org/10.1123/jsep.33.1.146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulton, E.E. (1957). On prediction in skilled movements. Psychological Bulletin, 54(6), 467478. https://doi.org/10.1037/h0045515

  • Promsri, A., Haid, T., & Federolf, P.A. (2018). How does lower limb dominance influence postural control movements during single leg stance? Human Movement Science, 58(February), 165174. https://doi.org/10.1016/j.humov.2018.02.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Promsri, A., Haid, T., Werner, I., & Federolf, P.A. (2020). Leg dominance effects on postural control when performing challenging balance exercises. Brain Sciences, 10(3), 128. https://doi.org/10.3390/brainsci10030128

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reissman, M.E., & Dhaher, Y.Y. (2015). A functional tracking task to assess frontal plane motor control in post stroke gait. Journal of Biomechanics, 48(10), 17821788. https://doi.org/10.1016/j.jbiomech.2015.05.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ronsse, R., Thonnard, J.L., Lefèvre, P., & Sepulchre, R. (2008). Control of bimanual rhythmic movements: Trading efficiency for robustness depending on the context. Experimental Brain Research, 187(2), 193205. https://doi.org/10.1007/s00221-008-1297-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, R.A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82(4), 225260. https://doi.org/10.1037/h0076770

  • Schmidt, R.A. (1988). Motor learning and control: A behavioral emphasis (2nd ed.). Human Kinetics.

  • Schöllhorn, W.I. (2012). The nonlinear nature of learning—A differential learning approach. The Open Sports Sciences Journal, 5(1), 100112. https://doi.org/10.2174/1875399x01205010100

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schöllhorn, W.I., Mayer-Kress, G., Newell, K.M., & Michelbrink, M. (2009). Time scales of adaptive behavior and motor learning in the presence of stochastic perturbations. Human Movement Science, 28(3), 319333. https://doi.org/10.1016/j.humov.2008.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, S.H. (2004). Optimal feedback control and the neural basis of volitional motor control. Nature Reviews Neuroscience, 5(7), 532544. https://doi.org/10.1038/nrn1427

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seashore, H.G. (1942). Some relationships of fine and gross motor abilities. Research Quarterly. American Association for Health, Physical Education and Recreation, 13(3), 259274. https://doi.org/10.1152/jn.00246.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selgrade, B.P., & Chang, Y.-H.H. (2015). Locomotor control of limb force switches from minimal intervention principle in early adaptation to noise reduction in late adaptation. Journal of Neurophysiology, 113(5), 14511461. https://doi.org/10.1152/jn.00246.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selinger, J.C., Wong, J.D., Simha, S.N., & Donelan, J.M. (2019). How humans initiate energy optimization and converge on their optimal gaits. Journal of Experimental Biology, 222(19), 113. https://doi.org/10.1242/jeb.198234

    • Search Google Scholar
    • Export Citation
  • Shih, H.J.S., Jarvis, D.N., Mikkelsen, P., & Kulig, K. (2018). Interlimb force coordination in bipedal dance jumps: Comparison between experts and novices. Journal of Applied Biomechanics, 34(6), 462468. https://doi.org/10.1123/jab.2017-0216

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigrist, R., Rauter, G., Marchal-Crespo, L., Riener, R., & Wolf, P. (2015). Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning. Experimental Brain Research, 233(3), 909925. https://doi.org/10.1007/s00221-014-4167-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigrist, R., Rauter, G., Riener, R., & Wolf, P. (2013). Terminal feedback outperforms concurrent visual, auditory, and haptic feedback in learning a complex rowing-type task. Journal of Motor Behavior, 45(6), 455472. https://doi.org/10.1080/00222895.2013.826169

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sommer, M., Häger, C., & Rönnqvist, L. (2014). Synchronized metronome training induces changes in the kinematic properties of the golf swing. Sports Biomechanics, 13(1), 116. https://doi.org/10.1080/14763141.2013.873817

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todorov, E. (2002). Cosine tuning minimizes motor errors. Neural Computation, 14(6), 12331260. https://doi.org/10.1162/089976602753712918

  • Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907915. https://doi.org/10.1038/nn1309

  • Todorov, E., & Jordan, M.I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5(11), 12261235. https://doi.org/10.1038/nn963

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, Y., Scholz, J.P., & Schöner, G. (2002). Goal-equivalent joint coordination in pointing: Affect of vision and arm dominance. Motor Control, 6(2), 183207. https://doi.org/10.1123/mcj.6.2.183

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, R.S., & Desmurget, M. (2010). Basal ganglia contributions to motor control: A vigorous tutor. Current Opinion in Neurobiology, 20(6), 704716. https://doi.org/10.1016/j.conb.2010.08.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wachholz, F., Tiribello, F., Mohr, M., Andel, S.V., & Federolf, P.A. (2020). Adolescent awkwardness: Alterations in temporal control characteristics of posture with maturation and the relation to movement exploration. Brain Sciences, 10(216), 216. https://doi.org/10.3390/brainsci10040216

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wachholz, F., Tiribello, F., Promsri, A., & Federolf, P.A. (2019). Should the minimal intervention principle be considered when investigating dual-tasking effects on postural control? Brain Sciences, 10(1), 113. https://doi.org/10.3390/brainsci10010001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wade, L., Lichtwark, G.A., & Farris, D.J. (2020). Joint and muscle-tendon coordination strategies during submaximal jumping. Journal of Applied Physiology, 128(3), 596603. https://doi.org/10.1152/japplphysiol.00293.2019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westermann, K., Lin, J.F.S., & Kulić, D. (2020). Inverse optimal control with time-varying objectives: Application to human jumping movement analysis. Scientific Reports, 10(1), 11174. https://doi.org/10.1038/s41598-020-67901-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worden, T.A., Beaudette, S.M., Brown, S.H.M., & Vallis, L.A. (2016). Estimating gait stability: Asymmetrical loading effects measured using margin of stability and local dynamic stability. Journal of Motor Behavior, 48(5), 455467. https://doi.org/10.1080/00222895.2015.1134433

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zago, M., Pacifici, I., Lovecchio, N., Galli, M., Federolf, P.A., & Sforza, C. (2017). Multi-segmental movement patterns reflect juggling complexity and skill level. Human Movement Science, 54, 144153. https://doi.org/10.1016/j.humov.2017.04.013

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2013 2013 267
Full Text Views 49 49 1
PDF Downloads 69 69 2