Increased Speed Elicited More Automatized but Less Predictable Control in Cyclical Arm and Leg Movements

in Motor Control
View More View Less
  • 1 FysioHolland Twente, Enschede, The Netherlands
  • | 2 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
  • | 3 Physiotherapy Practice Hullegie and Richter MSC, Enschede, The Netherlands
  • | 4 Department of Orthopedic Surgery, Medisch Spectrum Twente, Enschede, The Netherlands
Restricted access

The present study explores variations in the degree of automaticity and predictability of cyclical arm and leg movements. Twenty healthy adults were asked to walk on a treadmill at a lower-than-preferred speed, their preferred speed, and at a higher-than-preferred speed. In a separate, repetitive punching task, the three walking frequencies were used to cue the target pace of the cyclical arm movements. Movements of the arms, legs, and trunk were digitized with inertial sensors. Whereas absolute slope values (|β|) of the linear fit to the power spectrum of the digitized movements (p < .001, η2 = .676) were systematically smaller in treadmill walking than in repetitive punching, sample entropy measures (p < .001, η2 = .570) were larger reflecting the former task being more automated but also less predictable than the latter task. In both tasks, increased speeds enhanced automatized control (p < .001, η2 = .475) but reduced movement predictability (p = .008, η2 = .225). The latter findings are potentially relevant when evaluating effects of task demand changes in clinical contexts.

  • Acasio, J.C., Butowicz, C.M., Golyski, P.R., Nussbaum, M.A., & Hendershot, B.D. (2018). Associations between trunk postural control in walking and unstable sitting at various levels of task demand. Journal of Biomechanics, 75, 181185. https://doi.org/10.1016/j.jbiomech.2018.05.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balter, J.E., & Zehr, E.P. (2007). Neural coupling between the arms and legs during rhythmic locomotor-like cycling movement. Journal of Neurophysiology, 97(2), 18091818. https://doi.org/10.1152/jn.01038.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beek, P.J., & van Santvoord, A.A.M. (1992). Learning the cascade juggle: A dynamical systems analysis. Journal of Motor Behavior, 24(1), 8594. https://doi.org/10.1080/00222895.1992.9941604

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernstein, N.A. (1967). The co-ordination and regulation of movements. Pergamon Press.

  • Bosga, J., Hullegie, W., van Cingel, R., & Meulenbroek, R.G.J. (2018). Solution space: Monitoring the dynamics of motor rehabilitation. Physiotherapy Theory and Practice, 35(6), 19. https://doi.org/10.1080/09593985.2018.1454560

    • Search Google Scholar
    • Export Citation
  • Bosga, J., Meulenbroek, R.G.J., & Swinnen, S.P. (2003). Stability of inter-joint coordination during circle drawing: Effects of shoulder-joint articular properties. Human Movement Science, 22(3), 297320. https://doi.org/10.1016/S0167-9457(03)00045-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruijn, S.M., Meijer, O.G., van Dieen, J.H., Kingma, I., & Lamoth, C.J.C. (2008). Coordination of leg swing, thorax rotations, and pelvis rotations during gait: The organisation of total body angular momentum. Gait & Posture, 27(3), 455462. https://doi.org/10.1016/j.gaitpost.2007.05.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, J.J., Bruetsch, A., & Huisinga, J.M. (2016). Relationship between trunk and foot accelerations during waling in healthy adults. Gait & Posture, 49, 2529. https://doi.org/10.1016/j.gaitpost.2016.06.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delgado-Bonal, A., & Marshak, A. (2019). Approximate entropy and sample entropy: A comprehensive tutorial. Entropy, 21(6), 54137. https://doi.org/10.3390/e21060541

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedrichsen, J., Shadmehr, R., & Ivry, R.B. (2009). The coordination of movement: Optimal feedback control and beyond. Trends in Cognitive Sciences, 14(1), 3139. https://doi.org/10.1016/j.tics.2009.11.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donker, S.F., Beek, P.J., Wagenaar, R.C., & Mulder, T. (2001). Coordination between arm and leg movements during locomotion. Journal of Motor Behavior, 33(1), 86102. https://doi.org/10.1080/00222890109601905

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donker, S.F., Daffertshofer, A., & Beek, P.J. (2005). Effects of velocity and limb loading on the coordination between limb movements during walking. Journal of Motor Behavior, 37(3), 217230. https://doi.org/10.3200/JMBR.37.3.217-230

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dounskaia, N. (2005). The internal model and the leading joint hypothesis: Implications for control of multi-joint movements. Experimental Brain Research, 166(1), 116. https://doi.org/10.1007/s00221-005-2339-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Filimon, F. (2015). Are all spatial reference frames egocentric? Reinterpreting evidence for allocentric, object-centered, or world-centered reference frames. Frontiers in Human Neuroscience, 9, 648. https://doi.org/10.3389/fnhum.2015.00648

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Georgoulis, A.D., Moraiti, C.O., Ristanis, S., & Stergiou, N. (2006). A novel approach to measure variability in the anterior cruciate ligament deficient knee during walking: The use of the approximate entropy in orthopaedics. Journal of Clinical Monitoring and Computing, 20(1), 1118. https://doi.org/10.1007/s10877-006-1032-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haddad, J.M., van Emmerik, R.E.A., Whittlesey, S.N., & Hamill, J. (2006). Adaptations in interlimb and intralimb coordination to asymmetrical loading in human walking. Gait & Posture, 23(4), 429434. https://doi.org/10.1016/j.gaitpost.2005.05.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanlon, M., & Anderson, R. (2009). Real-time gait event detection using wearable sensors. Gait & Posture, 30(4), 523527. https://doi.org/10.1016/j.gaitpost.2009.07.128

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harbourne, R.T., & Stergiou, N. (2009). Movement variability and the use of nonlinear tools: Principles to guide physical therapist practice. Physical Therapy, 89(3), 267282. https://doi.org/10.2522/ptj.20080130

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, S.J., & Stergiou, N. (2015). Complex adaptive behavior and dexterous action. Nonlinear Dynamics, Psychology, and Life Sciences, 19(4), 345394. https://doi.org/10.1016/j.physbeh.2017.03.040

    • Search Google Scholar
    • Export Citation
  • Hausdorff, J.M., Peng, C.-K., Ladin, Z., Wei, J.Y., & Goldberger, A.L. (1995). Is walking correlations a random walk? Evidence for long-range in stride interval of human gait. Journal of Applied Physiology, 78(1), 349358. https://doi.org/10.1152/jappl.1995.78.1.349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausdorff, J.M., Yogev, G., Springer, S., Simon, E.S., & Giladi, Æ.N. (2005). Walking is more like catching than tapping: Gait in the elderly as a complex cognitive task. Experimental Brain Research, 164(4), 541548. https://doi.org/10.1007/s00221-005-2280-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H.J., & Ferris, D.P. (2009). Upper and lower limb muscle activation is bidirectionally and ipsilaterally coupled. Medicine & Science in Sports & Exercise, 41(9), 17781789. https://doi.org/10.1249/MSS.0b013e31819f75a7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huijben, B., van Schooten, K.S., van Dieën, J.H., & Pijnappels, M. (2018). The effect of walking speed on quality of gait in older adults. Gait & Posture, 65, 112116. https://doi.org/10.1016/j.gaitpost.2018.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, K., Challis, J.H., & Newell, K.M. (2007). Walking speed influences on gait cycle variability. Gait & Posture, 26(1), 128134. https://doi.org/10.1016/j.gaitpost.2006.08.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, P.C., & Ferris, D.P. (2005). The effect of movement frequency on interlimb coupling during recumbent stepping. Motor Control, 9(2), 144163. https://doi.org/10.1123/mcj.9.2.144

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavanagh, J.J. (2009). Lower trunk motion and speed-dependence during walking. Journal of NeuroEngineering and Rehabilitation, 6(1), 9. https://doi.org/10.1186/1743-0003-6-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelso, S.J., Southard, D.L., & Goodman, D. (1979). On the coordination of two-handed movements. Journal of Experimental Psychology: Human Perception and Performance, 5(2), 229238.

    • Search Google Scholar
    • Export Citation
  • Ko, Y., Challis, J.H., & Newell, K.M. (2003). Learning to coordinate redundant degrees of freedom in a dynamic balance task. Human Movement Science, 22(1), 4766. https://doi.org/10.1016/S0167-9457(02)00177-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenraadt, K.L.M., Roelofsen, E.G.J., Duysens, J., & Keijsers, N.L.W. (2014). Cortical control of normal gait and precision stepping: An fNIRS study. NeuroImage, 85, 415422. https://doi.org/10.1016/j.neuroimage.2013.04.070

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacLellan, M.J., Ivanenko, Y.P., Catavitello, G., La Scaleia, V., & Lacquaniti, F. (2013). Coupling of upper and lower limb pattern generators during human crawling at different arm/leg speed combinations. Experimental Brain Research, 225(2), 217225. https://doi.org/10.1007/s00221-012-3364-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madeleine, P., & Madsen, T.M.T. (2009). Changes in the amount and structure of motor variability during a deboning process are associated with work experience and neck-shoulder discomfort. Applied Ergonomics, 40(5), 887894. https://doi.org/10.1016/j.apergo.2008.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Suilleabhain, P.E., & Dewey, R.B. (2001). Validation for tremor quantification of an electromagnetic tracking device. Movement Disorders, 16(2), 265271. https://doi.org/10.1002/mds.1064

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, A.S., Schlink, B.R., Hairston, W.D., König, P., & Ferris, D.P. (2017). Restricted vision increases sensorimotor cortex involvement in human walking. Journal of Neurophysiology, 118(4), 19431951. https://doi.org/10.1152/jn.00926.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proteau, L., Roujoula, A., & Messier, J. (2009). Evidence for continuous processing of visual information in a manual video-aiming task. Journal of Motor Behavior, 41(3), 219231. https://doi.org/10.3200/JMBR.41.3.219-231

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richman, J.S., & Moorman, J.R. (2000). Physiological time-series analysis using approximate entropy and sample entropy maturity in premature infants Physiological time-series analysis using approximate entropy and sample entropy. Americal Journal of Physiology Heart and Circulatory Physiology, 278(6), H2039H2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roelofsen, E.G.J., Bosga, J., Rosenbaum, D.A., Nijhuis-van der Sanden, M.W.G., Hullegie, W., van Cingel, R., & Meulenbroek, R.G.J. (2016). Haptic feedback helps bipedal coordination. Experimental Brain Research, 234(10), 28692881. https://doi.org/10.1007/s00221-016-4689-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roelofsen, E.G.J., Brown, D.D., Nijhuis-van der Sanden, M.W.G., Staal, J.B., & Meulenbroek, R.G.J. (2018). Does motor expertise facilitate amplitude differentiation of lower limb-movements in an asymmetrical bipedal coordination task? Human Movement Science, 59, 201211. https://doi.org/10.1016/j.humov.2018.04.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenbaum, D.A., Dawson, A.M., & Challis, J.H. (2006). Haptic tracking permits bimanual independence. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 12661275. https://doi.org/10.1037/0096-1523.32.5.1266

    • Search Google Scholar
    • Export Citation
  • Rosenbaum, D.A., Slotta, J.D., Vaughan, J., & Plamondon, R. (1991). Optimal movement selection. Psychological Science, 2(2), 8691. https://doi.org/10.1111/j.1467-9280.1991.tb00106.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sainburg, R.L. (2014). Convergent models of handedness and brain lateralization. Frontiers in Psychology, 5, 1092. https://doi.org/10.3389/fpsyg.2014.01092

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, L. (2010). Inter-limb coordination in swimming: Effect of speed and skill level. Human Movement Science, 29(1), 103113. https://doi.org/10.1016/j.humov.2009.05.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selles, R.W., Bussmann, J.B.J., Wagenaar, R.C., & Stam, H.J. (2001). Comparing predictive validity of four ballistic swing phase models of human walking. Journal of Biomechanics, 34(9), 11711177. https://doi.org/10.1016/S0021-9290(01)00075-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sidaway, B., Sekiya, H., & Fairweather, M. (1995). Demand in programmed serial aiming responses movement variability as a function of accuracy. Journal of Motor Behavior, 27(1), 6776. https://doi.org/10.1080/00222895.1995.9941700

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivasan, D., Mathiassen, S.E., Samani, A., & Madeleine, P. (2015). Effects of concurrent physical and cognitive demands on arm movement kinematics in a repetitive upper-extremity precision task. Human Movement Science, 42, 8999. https://doi.org/10.1016/j.humov.2015.05.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivasan, D., Samani, A., Mathiassen, S.E., & Madeleine, P. (2015). The size and structure of arm movement variability decreased with work pace in a standardised repetitive precision task. Ergonomics, 58(1), 128139. https://doi.org/10.1080/00140139.2014.957736

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stergiou, N., Harbourne, R.T., & Cavanaugh, J.T. (2006). Optimal movement variability: A new theoretical perspective for neurologic physical therapy. Journal of Neurologic Physical Therapy, 30(3), 120129. https://doi.org/10.1097/01.NPT.0000281949.48193.d9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tochigi, Y., Segal, N.A., Vaseenon, T., & Brown, T.D. (2012). Entropy analysis of tri-axial leg acceleration signal waveforms for measurement of decrease of physiological variability in human gait. Journal of Orthopaedic Research, 30(6), 897904. https://doi.org/10.1002/jor.22022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Galen, G.P., Van Doorn, R.R.A., & Schomaker, L.R.B. (1990). Effects of motor programming on the power spectral density function of finger and wrist movements. Journal of Experimental Psychology: Human Perception and Performance, 16(4), 755765. https://doi.org/10.1037/0096-1523.16.4.755

    • Search Google Scholar
    • Export Citation
  • Vaughan, J., Rosenbaum, D.A., Diedrich, F.J., & Moore, C.M. (1996). Cooperative selection of movements: The Optimal Selection model. Psychological Research, 58(4), 254273. https://doi.org/10.1007/BF00447072

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vereijken, B., van Emmerik, R.E.A., Whiting, H.T.A., & Karl, M. (1992). Free(z)ing degrees of freedom in skill acquisition. Journal of Motor Behavior, 24(1), 133142. https://doi.org/10.1080/00222895.1992.9941608

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagenaar, R.C., & Van Emmerik, R.E.A. (2000). Resonant frequencies of arms and legs identify different walking patterns. Journal of Biomechanics, 33(7), 853861. https://doi.org/10.1016/S0021-9290(00)00020-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., & Ji, R. (2015). Estimate spatial-temporal parameters of human gait using inertial sensors. Presented at the 2015 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, Shenyang, China. IEEE-CYBER 2015, 61174027, 1883–1888. https://doi.org/10.1109/CYBER.2015.7288234

    • Search Google Scholar
    • Export Citation
  • Wannier, T., Bastiaanse, C., Colombo, G., & Dietz, V. (2001). Arm to leg coordination in humans during walking, creeping and swimming activities. Experimental Brain Research, 141(3), 375379. https://doi.org/10.1007/s002210100875

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whittlesey, S.N., van Emmerik, R.E.A., & Hamill, J. (2000). The swing phase of human walking is not a passive movement. Motor Control, 4(3), 273292. https://doi.org/10.1123/mcj.4.3.273

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijnants, M.L., Bosman, A.M., Hasselman, F., Cox, R.F., & van Order, G.C. (2009). 1/f scaling in movement time changes with practice in precision aiming. Nonlinear Dynamics, Psychology, and Life Sciences, 13(1), 7594.

    • Search Google Scholar
    • Export Citation
  • Witney, A.G., Vetter, P., & Wolpert, D.M. (2001). The influence of previous experience on predictive motor control. NeuroReport, 12(4), 649653. https://doi.org/10.1097/00001756-200103260-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yentes, J.M., Hunt, N., Schmid, K.K., Kaipust, J.P., McGrath, D., & Stergiou, N. (2013). The appropriate use of approximate entropy and sample entropy with short data sets. Annals of Biomedical Engineering, 41(2), 349365. https://doi.org/10.1007/s10439-012-0668-3

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1040 1040 193
Full Text Views 12 12 0
PDF Downloads 16 16 0