Torso Kinematics in Human Rolling Do Not Change When Upper Extremity Motion Is Constrained

in Motor Control
View More View Less
  • 1 Aegis Aerospace Inc., Houston, TX, USA
  • | 2 Department of Psychology, University of Oslo, Oslo, Norway
  • | 3 RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
  • | 4 Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA
  • | 5 Department of Biomedical Engineering, Wichita State University, Wichita, KS, USA
Restricted access

Human rolling, as turning in bed, is a fundamental activity of daily living. A quantitative analysis of rolling could help identify the neuromusculoskeletal disorders that prohibit rolling and develop interventions for individuals who cannot roll. This study sought to determine whether crossing the arms over the chest would alter fundamental coordination patterns when rolling. Kinematic data were collected from 24 subjects as they rolled with and without their arms crossed over their chest. Crossing the arms decreased the mean peak angular velocities of the shoulders (p = .001) and pelvis (p = .013) and influenced the mean duration of the roll (p = .057). There were no fundamental differences in shoulder and pelvis coordination when rolling with the arms crossed over the chest, implying that the arms may not have a major role in rolling.

  • Alexander, R., Boehme, R., & Cupps, B. (1993). Normal development of functional motor skills: The first year of life. Therapy Skill Builders.

    • Search Google Scholar
    • Export Citation
  • Anderson, F.C., & Pandy, M.G. (2001). Dynamic optimization of human walking. Journal of Biomechanical Engineering, 123(5), 381390. https://doi.org/10.1115/1.1392310

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ando, T., Kobayashi, Y., Okamoto, J., Takahashi, M., & Fujie, M.G. (2010). Intelligent trunk corset to support rollover of cancer bone metastasis patients. IEEE/ASME Transactions on Mechatronics, 15(2), 181190. https://doi.org/10.1109/TMECH.2010.2040833

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, E.M., Hamner, S.R., Seth, A., Millard, M., & Delp, S.L. (2013). How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds. Journal of Experimental Biology, 216(11), 21502160.

    • Search Google Scholar
    • Export Citation
  • Bluestein, D., & Javaheri, A. (2008). Pressure ulcers: Prevention, evaluation, and management. American Family Physician, 78(10), 11861194.

    • Search Google Scholar
    • Export Citation
  • Bly, L. (1994). Motor skills acquisition in the first year. Therapy Skill Builders.

  • Davies, P.M. (2000). Steps to follow: The comprehensive treatment of patients with hemiplegia: Springer Science & Business Media.

  • Fregly, B.J., Boninger, M.L., & Reinkensmeyer, D.J. (2012). Personalized neuromusculoskeletal modeling to improve treatment of mobility impairments: A perspective from European research sites. Journal of Neuroengineering and Rehabilitation, 9(1), 18. https://doi.org/10.1186/1743-0003-9-18

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, R., & Grossman, W. (1975). Normal motor patterns in sleep in man. In E.D. Weitzman (Ed.), Advances in sleep research (pp. 67107). Spectrum Publications.

    • Search Google Scholar
    • Export Citation
  • Hamner, S.R., Seth, A., & Delp, S.L. (2010). Muscle contributions to propulsion and support during running. Journal of Biomechanics, 43(14), 27092716. https://doi.org/10.1016/j.jbiomech.2010.06.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harman, E.A., Rosenstein, M.T., Frykman, P.N., & Rosenstein, R.M. (1990). The effects of arms and countermovement on vertical jumping. Medicine & Science in Sports & Exercise, 22(6), 825833. https://doi.org/10.1249/00005768-199012000-00015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinrichs, R.N. (1987). Upper extremity function in running II: Angular momentum considerations. International Journal of Sport Biomechanics, 3(3), 242263. https://doi.org/10.1123/ijsb.3.3.242

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoogenboom, B.J., Voight, M.L., Cook, G., & Gill, L. (2009). Using rolling to develop neuromuscular control and coordination of the core and extremities of athletes. North American Journal of Sports Physical Therapy, 4(2), 7082.

    • Search Google Scholar
    • Export Citation
  • Kafri, M., & Dickstein, R. (2005). Activation of selected frontal trunk and extremities muscles during rolling from supine to side lying in healthy subjects and in post-stroke hemiparetic patients. NeuroRehabilitation, 20(2), 125131. https://doi.org/10.3233/NRE-2005-20208

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kistemaker, D.A., Wong, J.D., & Gribble, P.L. (2014). The cost of moving optimally: Kinematic path selection. Journal of Neurophysiology, 112(8), 18151824. https://doi.org/10.1152/jn.00291.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleitman, N., Cooperman, N.R., & Mullin, F.J. (1933). Studies on the physiology of sleep: IX. Motility and body temperature during sleep. American Journal of Physiology–Legacy Content, 105(3), 574584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marras, W.S., Davis, K.G., Kirking, B.C., & Bertsche, P.K. (1999). A comprehensive analysis of low-back disorder risk and spinal loading during the transferring and repositioning of patients using different techniques. Ergonomics, 42(7), 904926. https://doi.org/10.1080/001401399185207

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naitoh, P., Muzet, A., Johnson, L.C., & Moses, J. (1973). Body movements during sleep after sleep loss. Psychophysiology, 10(4), 363368. https://doi.org/10.1111/j.1469-8986.1973.tb00793.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pandy, M.G., Zajac, F.E., Sim, E., & Levine, W.S. (1990). An optimal control model for maximum-height human jumping. Journal of Biomechanics, 23(12), 11851198. https://doi.org/10.1016/0021-9290(90)90376-E

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pontzer, H., Holloway, J.H., Raichlen, D.A., & Lieberman, D.E. (2009). Control and function of arm swing in human walking and running. Journal of Experimental Biology, 212(4), 523534. https://doi.org/10.1242/jeb.024927

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, R.R., VanSant, A.F., & Newton, R.A. (1989). Description of adult rolling movements and hypothesis of developmental sequences. Physical Therapy, 69(1), 6371. https://doi.org/10.1093/ptj/69.1.63

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenbaum, D.A. (1980). Human movement initiation: Specification of arm, direction, and extent. Journal of Experimental Psychology: General, 109(4), 444. https://doi.org/10.1037/0096-3445.109.4.444

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, K., & Neptune, R.R. (2006). Differences in muscle function during walking and running at the same speed. Journal of Biomechanics, 39(11), 20052013. https://doi.org/10.1016/j.jbiomech.2005.06.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schibye, B., Hansen, A.F., Hye-Knudsen, C., Essendrop, M., Böcher, M., & Skotte, J. (2003). Biomechanical analysis of the effect of changing patient-handling technique. Applied Ergonomics, 34(2), 115123. https://doi.org/10.1016/S0003-6870(03)00003-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidler, R.D., Noll, D.C.and Thiers, G. (2004). Feedforward and feedback processes in motor control. Neuroimage, 22(4), 17751783. https://doi.org/10.1016/j.neuroimage.2004.05.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sekiya, N., & Takahashi, M. (2004). Kinematic and kinetic analysis of rolling motion in normal adults. Journal of the Japanese Physical Therapy Association, 7(1), 16. https://doi.org/10.1298/jjpta.7.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stack, E.L., & Ashburn, A.M. (2006). Impaired bed mobility and disordered sleep in Parkinson’s disease. Movement Disorders, 21(9), 13401342. https://doi.org/10.1002/mds.20944

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiger, M., Thompson, P., & Marsden, C. (1996). Disordered axial movement in Parkinson9s disease. Journal of Neurology, Neurosurgery and Psychiatry, 61(6), 645648. https://doi.org/10.1136/jnnp.61.6.645

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Soest, A.J., Schwab, A.L., Bobbert, M.F., & van Ingen Schenau, G.J. (1993). The influence of the biarticularity of the gastrocnemius muscle on vertical-jumping achievement. Journal of Biomechanics, 26(1), 18. https://doi.org/10.1016/0021-9290(93)90608-H

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, C., Bowes, S., Kirk, C., Nicholson, P., Dobbs, R., & Dobbs, S. (1991). Measurement of axial rotation: Its relevance to screening for night-time hypokinesia in old age and parkinsonism. Age and Ageing, 20(1), 37. https://doi.org/10.1093/ageing/20.1.3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilde-Frenz, J., & Schulz, H. (1983). Rate and distribution of body movements during sleep in humans. Perceptual and Motor Skills, 56(1), 275283. https://doi.org/10.2466/pms.1983.56.1.275

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willems, P., Cavagna, G., & Heglund, N. (1995). External, internal and total work in human locomotion. Journal of Experimental Biology, 198(2), 379393. https://doi.org/10.1242/jeb.198.2.379

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winter, D.A. (1979). A new definition of mechanical work done in human movement. Journal of Applied Physiology, 46(1), 7983. https://doi.org/10.1152/jappl.1979.46.1.79

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zajac, F.E. (1993). Muscle coordination of movement: A perspective. Journal of Biomechanics, 26, 109124. https://doi.org/10.1016/0021-9290(93)90083-Q

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zajac, F.E., Neptune, R.R., & Kautz, S.A. (2002). Biomechanics and muscle coordination of human walking: Part I: Introduction to concepts, power transfer, dynamics and simulations. Gait & Posture, 16(3), 215232. https://doi.org/10.1016/S0966-6362(02)00068-1

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1138 1138 197
Full Text Views 10 10 1
PDF Downloads 15 15 2