Altered Spatiotemporal Gaze Dynamics During Unexpected Obstacle Negotiation in a Fatigued State

in Motor Control

Click name to view affiliation

Jacob W. Hinkel-LipskerMove-Learn Laboratory, Department of Kinesiology, California State University, Northridge, CA, USA

Search for other papers by Jacob W. Hinkel-Lipsker in
Current site
Google Scholar
PubMed
Close
*
,
Nicole M. StoehrMove-Learn Laboratory, Department of Kinesiology, California State University, Northridge, CA, USA

Search for other papers by Nicole M. Stoehr in
Current site
Google Scholar
PubMed
Close
*
,
Pranavi L. DepurMove-Learn Laboratory, Department of Kinesiology, California State University, Northridge, CA, USA

Search for other papers by Pranavi L. Depur in
Current site
Google Scholar
PubMed
Close
*
,
Michael A. WeiseMove-Learn Laboratory, Department of Kinesiology, California State University, Northridge, CA, USA

Search for other papers by Michael A. Weise in
Current site
Google Scholar
PubMed
Close
*
,
Joshua A. VicenteMove-Learn Laboratory, Department of Kinesiology, California State University, Northridge, CA, USA

Search for other papers by Joshua A. Vicente in
Current site
Google Scholar
PubMed
Close
*
,
Stefanie A. DrewVisual Information Sciences and Neuroscience Laboratory, Department of Psychology, California State University, Northridge, CA, USA

Search for other papers by Stefanie A. Drew in
Current site
Google Scholar
PubMed
Close
*
, and
Sean M. RogersDepartment of Athletic Training, Drake University, Des Moines, IA, USA

Search for other papers by Sean M. Rogers in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Humans use their peripheral vision during locomotion to perceive an approaching obstacle in their path, while also focusing central gaze on steps ahead of them. However, certain physiological and psychological factors may change this strategy, such as when a walker is physically fatigued. In this study, 21 healthy participants walked through a dark room while wearing eye tracking glasses before and following intense exercise. Obstacles were placed in random locations along their path and became illuminated when participants approached them. Results indicate that, when fatigued, participants had altered spatial gaze strategies, including more frequent use of central gaze to perceive obstacles and an increased gaze angular displacement. However, there were no changes in temporal gaze strategies following exercise. These findings reveal how physical fatigue alters one’s visual perception of their environment during locomotion, and may partially explain why people are at greater risk of trips and falls while fatigued.

Hinkel-Lipsker (jhlipsker@csun.edu) is corresponding author, https://orcid.org/0000-0002-2549-3927

  • Collapse
  • Expand
  • American College of Sports Medicine. (2017). ACSM’s exercise testing and prescription (10th ed.). Lippincott Williams & Wilkins.

  • Ando, S., Kokubu, M., Kimura, T., Moritani, T., & Araki, M. (2008). Effects of acute exercise on visual reaction time. International Journal of Sports Medicine, 29(12), 994998. https://doi.org/10.1055/s-2008-1038733

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W.P., & Mark, L.S. (2005). Information for step length adjustment in running. Human Movement Science, 24(4), 496531. https://doi.org/10.1016/j.humov.2005.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, R.B. (2016). Patterns of firefighter fireground injuries. National Fire and Protection Association. Fire Analysis and Rescue Division. (December), 146.

    • Search Google Scholar
    • Export Citation
  • Chapman, B.B., & Corneil, B.D. (2008). Properties of human eye-head gaze shifts in an anti-gaze shift task. Vision Research, 48(4), 538548. https://doi.org/10.1016/j.visres.2007.11.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domínguez-Zamora, F.J., Gunn, S.M., & Marigold, D.S. (2018). Adaptive gaze strategies to reduce environmental uncertainty during a sequential visuomotor behaviour. Scientific Reports, 8(1), 113. https://doi.org/10.1038/s41598-018-32504-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fajen, B.R., Warren, W.H., Temizer, S., & Kaelbing, L.P. (2003). A dynamical model of visually-guided steering, obstacle avoidance, and route selection. International Journal of Computer Vision, 54(1–3), 1334. https://doi.org/10.1023/a:1023701300169

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gegenfurtner, K.R. (2016). The interaction between vision and eye movements. Perception, 45(12), 13331357.

  • Goldring, J.E., Dorris, M.C., Corneil, B.D., Ballantyne, P.A., & Munoz, D.R. (1996). Combined eye-head gaze shifts to visual and auditory targets in humans. Experimental Brain Research, 111(1), 6878. https://doi.org/10.1007/BF00229557

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graci, V., Elliott, D.B., & Buckley, J.G. (2009). Peripheral visual cues affect minimum-foot-clearance during overground locomotion. Gait & Posture, 30(3), 370374. https://doi.org/10.1016/j.gaitpost.2009.06.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagio, S., & Kouzaki, M. (2020). Visuomotor transformation for the lead leg affects trail leg trajectories during visually guided crossing over a virtual obstacle in humans. Frontiers in Neuroscience, 14(April), 110. https://doi.org/10.3389/fnins.2020.00357

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassan, S.E., Lovie-Kitchin, J.E., & Woods, R.L. (2002). Vision and mobility performance of subjects with age-related macular degeneration. Optometry and Vision Science, 79(11), 697707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heijnen, M.J.H., Muir, B.C., & Rietdyk, S. (2012). Factors leading to obstacle contact during adaptive locomotion. Experimental Brain Research, 223(2), 219231. https://doi.org/10.1007/s00221-012-3253-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heijnen, M.J.H., Romine, N.L., Stumpf, D.M., & Rietdyk, S. (2014). Memory-guided obstacle crossing: More failures were observed for the trail limb versus lead limb. Experimental Brain Research, 232(7), 21312142. https://doi.org/10.1007/s00221-014-3903-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinkel-Lipsker, J.W., Stoehr, N.M., Lachica, I.J., & Rogers, S.M. (2021). Gait adaptations to physical fatigue during the negotiation of variable and unexpected obstacles. Human Factors, 187208211007588. https://doi.org/10.1177/00187208211007588

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hocking, D.R., Rinehart, N.J., McGinley, J.L., Galna, B., Moss, S.A., & Bradshaw, J.L. (2011). Gait adaptation during obstacle crossing reveals impairments in the visual control of locomotion in Williams syndrome. Neuroscience, 197, 320329. https://doi.org/10.1016/j.neuroscience.2011.08.075

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horn, G.P., Kesler, R.M., Motl, R.W., Hsiao-Wecksler, E.T., Klaren, R.E., Ensari, I., Petrucci, M.N., Fernhall, B., & Rosengren, K.S. (2015). Physiological responses to simulated firefighter exercise protocols in varying environments. Ergonomics, 58(6), 10121021. https://doi.org/10.1080/00140139.2014.997806

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hossain, A., & Miléus, E. (2016). Eye movement event detection for wearable eye trackers.

  • Jansen, S.E.M., Toet, A., & Werkhoven, P.J. (2010). Obstacle crossing with lower visual field restriction: Shifts in strategy. Journal of Motor Behavior, 43(1), 5562. https://doi.org/10.1080/00222895.2010.533593

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaydari Fard, S., Tahmasebi, B.S., & Lavender, A.P. (2019). Mental fatigue impairs simple reaction time in non-athletes more than athletes. Fatigue: Biomedicine, Health and Behavior, 7(3), 117126. https://doi.org/10.1080/21641846.2019.1632614

    • Search Google Scholar
    • Export Citation
  • Lachenbruch, P.A. (2014). McNemar test. In Wiley StatsRef: Statistics reference online.

  • Lee, D.N., Lishman, J.R., & Thomson, J.A. (1982). Regulation of gait in long jumping. Journal of Experimental Psychology: Human Perception and Performance, 8(3), 448459. https://doi.org/10.1037/0096-1523.8.3.448

    • Search Google Scholar
    • Export Citation
  • Liang, H., Ke, X., & Wu, J. (2018). Transitioning from the level surface to stairs in children with and without Down syndrome: Motor strategy and anticipatory locomotor adjustments. Gait & Posture, 66, 260266. https://doi.org/10.1016/j.gaitpost.2018.09.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marigold, D.S. (2008). Role of peripheral visual cues in online visual guidance of locomotion. Exercise and Sport Sciences Reviews, 36(3), 145151. https://doi.org/10.1097/JES.0b013e31817bff72

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marigold, D.S., & Patla, A.E. (2008). Visual information from the lower visual field is important for walking across multi-surface terrain. Experimental Brain Research, 188(1), 2331. https://doi.org/10.1007/s00221-008-1335-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthis, J.S., Yates, J.L., & Hayhoe, M.M. (2018). Gaze and the control of foot placement when walking in natural terrain. Current Biology, 28(8), 12241233.e5. https://doi.org/10.1016/j.cub.2018.03.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nardone, A., Tarantola, J., Giordano, A., & Schieppati, M. (1997). Fatigue effects on body balance. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 105(4), 309320. https://doi.org/10.1016/S0924-980X(97)00040-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K. (1986). Constraints on the development of coordination. In Motor Development in Children: Aspects of Coordination and Control (pp. 341360).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novak, A.C., & Deshpande, N. (2014). Effects of aging on whole body and segmental control while obstacle crossing under impaired sensory conditions. Human Movement Science, 35, 121130. https://doi.org/10.1016/j.humov.2014.03.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olsen, A. (2012). The Tobii I-VT fixation filter (pp. 121). Tobii Technology.

  • Patla, A.E. (1997). Understanding the roles of vision in the control of human locomotion. Gait & Posture, 5(1), 5469. https://doi.org/https://doi.org/10.1016/S0966-6362(96)01109-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patla, A.E., & Vickers, J.N. (1997). Where and when do we look as we approach and step over an obstacle in the travel path? Neuroreport, 8(17), 36613665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pavelka, R., Třebický, V., Fialová, J.T., Zdobinský, A., Coufalová, K., Havlíček, J., & Tufano, J.J. (2020). Acute fatigue affects reaction times and reaction consistency in Mixed Martial Arts fighters. PLoS One, 15(1), 113. https://doi.org/10.1371/journal.pone.0227675

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rietdyk, S., & Rhea, C.K. (2006). Control of adaptive locomotion: Effect of visual obstruction and visual cues in the environment. Experimental Brain Research, 169(2), 272278. https://doi.org/10.1007/s00221-005-0345-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues, S.T., Forner-Cordero, A., Garcia, V.D., Zago, P.F.P., & Ferasoli, H. (2009). Influence of visual information on optimal obstacle crossing. Paper presented at the 4th European Conference of the International Federation for Medical and Biological Engineering. pp. 21332137. Springer.

    • Search Google Scholar
    • Export Citation
  • Santos, L.C., Moraes, R., & Patla, A.E. (2010). Visual feedforward control in human locomotion during avoidance of obstacles that change size. Motor Control, 14(4), 424439. https://doi.org/10.1123/mcj.14.4.424

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, B., Johnson, L., Rothkopf, C., Ballard, D., & Hayhoe, M. (2012). The effect of uncertainty and reward on fixation behavior in a driving task. Journal of Vision, 12(9), 1259. https://doi.org/10.1167/12.9.1259

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, N.D.A., Gardiner, J.D., Crompton, R.H., & Lawson, R. (2020). Look out: An exploratory study assessing how gaze (eye angle and head angle) and gait speed are influenced by surface complexity. PeerJ, 8, e8838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmis, M.A., Allsop, J., Baranian, M., Baker, J., Basevitch, I., Latham, K., Pardhan, S., & van Paridon, K.N. (2017). Visual search behavior in individuals with retinitis pigmentosa during level walking and obstacle crossing. Investigative Ophthalmology & Visual Science, 58(11), 47374746. https://doi.org/10.1167/iovs.17-21573

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmis, M.A., & Buckley, J.G. (2012). Obstacle crossing during locomotion: Visual exproprioceptive information is used in an online mode to update foot placement before the obstacle but not swing trajectory over it. Gait and Posture, 36(1), 160162. https://doi.org/10.1016/j.gaitpost.2012.02.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turano, K.A., Broman, A.T., Bandeen-Roche, K., Munoz, B., Rubin, G.S., & West, S.K. (2004). Association of visual field loss and mobility performance in older adults: Salisbury eye evaluation study. Optometry and Vision Science, 81(5), 298307. https://doi.org/10.1097/01.opx.0000134903.13651.8e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turano, K.A., Geruschat, D.R., Baker, F.H., Stahl, J.W., & Shapiro, M.D. (2001). Direction of gaze while walking a simple route: Persons with normal vision and persons with retinitis pigmentosa. Optometry and Vision Science, 78(9), 667675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uth, N., Sørensen, H., Overgaard, K., & Pedersen, P.K. (2004). Estimation of VO2max from the ratio between HR max and HR rest—The Heart Rate Ratio Method. European Journal of Applied Physiology, 91(1), 111115. https://doi.org/10.1007/s00421-003-0988-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warburton, D.E.R., Jamnik, V., Bredin, S.S.D., Shephard, R.J., & Gledhill, N. (2018). The 2018 Physical Activity Readiness Questionnaire for Everyone (PAR-Q+) and electronic Physical Activity Readiness Medical Examination (ePARmed-X+). The Health & Fitness Journal of Canada, 11(1), 3134.

    • Search Google Scholar
    • Export Citation
  • Warren, W.H., & Fajen, B.R. (2004). Behavioral dynamics of human locomotion. Ecological Psychology, 16(1), 6166. https://doi.org/10.1207/s15326969eco1601_8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, N. (2017). The Borg rating of perceived exertion (RPE) scale. Occupational Medicine, 67(5), 404405. https://doi.org/10.1093/occmed/kqx063

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3420 2305 7
Full Text Views 19 8 1
PDF Downloads 29 13 1