The Role of Predictability of Perturbation in Control of Posture: A Scoping Review

in Motor Control

Click name to view affiliation

Tippawan KaewmaneePhD Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA

Search for other papers by Tippawan Kaewmanee in
Current site
Google Scholar
PubMed
Close
*
and
Alexander S. AruinDepartment of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA

Search for other papers by Alexander S. Aruin in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Efficient maintenance of posture depends on the ability of humans to predict consequences of a perturbation applied to their body. The purpose of this scoping review was to map the literature on the role of predictability of a body perturbation in control of posture. A comprehensive search of MEDLINE, EMBASE, and CINAHL databases was conducted. Inclusion criteria were studies of adults participating in experiments involving body perturbations, reported outcomes of posture and balance control, and studies published in English. Sixty-three studies were selected. The reviewed information resources included the availability of sensory information and the exposure to perturbations in different sequences of perturbation magnitudes or directions. This review revealed that people use explicit and implicit information resources for the prediction of perturbations. Explicit information consists of sensory information related to perturbation properties and timing, whereas implicit information involves learning from repetitive exposures to perturbations of the same properties.

Aruin (aaruin@uic.edu) is corresponding author, https://orcid.org/0000-0002-6418-4529

  • Collapse
  • Expand
  • Adamcova, N., & Hlavacka, F. (2007). Modification of human postural responses to soleus muscle vibration by rotation of visual scene. Gait & Posture, 25(1), 99105. https://doi.org/10.1016/j.gaitpost.2006.01.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandrov, A., Frolov, A., Horak, F., Carlson-Kuhta, P., & Park, S. (2005). Feedback equilibrium control during human standing. Biological Cybernetics, 93(5), 309322. https://doi.org/10.1007/s00422-005-0004-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology, 8(1), 1932. https://doi.org/10.1080/1364557032000119616

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aruin, A.S., Forrest, W.R., & Latash, M.L. (1998). Anticipatory postural adjustments in conditions of postural instability. Electroencephalography and Clinical Neurophysiology, 109(4), 350359. https://doi.org/10.1016/S0924-980X(98)00029-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aruin, A.S., Ganesan, M., & Lee, Y. (2017). Improvement of postural control in individuals with multiple sclerosis after a single-session of ball throwing exercise. Multiple Sclerosis and Related Disorders, 17, 224229. https://doi.org/10.1016/j.msard.2017.08.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aruin, A.S., & Latash, M.L. (1995). The role of motor action in anticipatory postural adjustments studied with self-induced and externally triggered perturbations. Experimental Brain Research, 106(2), 291300. https://doi.org/10.1007/BF00241125

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aruin, A.S., & Latash, M.L. (1996). Anticipatory postural adjustments during self-initiated perturbations of different magnitude triggered by a standard motor action. Electroencephalography and Clinical Neurophysiology, 101(6), 497503. https://doi.org/10.1016/S0013-4694(96)95219-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aruin, A.S., & Shiratori, T. (2003). Anticipatory postural adjustments while sitting: The effects of different leg supports. Experimental Brain Research, 151(1), 4653. https://doi.org/10.1007/s00221-003-1456-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aruin, A.S., Kanekar, N., & Lee, Y.J. (2015). Anticipatory and compensatory postural adjustments in individuals with multiple sclerosis in response to external perturbations. Neuroscience Letters, 591, 182186. https://doi.org/10.1016/j.neulet.2015.02.050

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aruin, A.S., Kanekar, N., Lee, Y.J., & Ganesan, M. (2015). Enhancement of anticipatory postural adjustments in older adults as a result of a single session of ball throwing exercise. Experimental Brain Research, 233(2), 649655. https://doi.org/10.1007/s00221-014-4144-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aruin, A.S., Shiratori, T., & Latash, M.L. (2001). The role of action in postural preparation for loading and unloading in standing subjects. Experimental Brain Research, 138(4), 458466. https://doi.org/10.1007/s002210100729

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Assländer, L., Gruber, M., & Giboin, L.S. (2020). Reductions in body sway responses to a rhythmic support surface tilt perturbation can be caused by other mechanisms than prediction. Experimental Brain Research, 238(2), 465476. https://doi.org/10.1007/s00221-020-05723-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, L.A., Jensen, J.L., Korff, T., & Woollacott, M.H. (2001). The translating platform paradigm: Perturbation displacement waveform alters the postural response. Gait & Posture, 14(3), 256263. https://doi.org/10.1016/S0966-6362(01)00131-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burleigh, A., & Horak, F. (1996). Influence of instruction, prediction, and afferent sensory information on the postural organization of step initiation. Journal of Neurophysiology, 75(4), 16191628. https://doi.org/10.1152/jn.1996.75.4.1619

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, M.G., Thorstensson, A., & Cresswell, A.G. (2005). Deceleration affects anticipatory and reactive components of triggered postural responses. Experimental Brain Research, 167(3), 433445. https://doi.org/10.1007/s00221-005-0049-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceyte, H., Cian, C., Zory, R., Barraud, P.A., Roux, A., & Guerraz, M. (2007). Effect of Achilles tendon vibration on postural orientation. Neuroscience Letters, 416(1), 7175. https://doi.org/10.1016/j.neulet.2007.01.044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikh, S., Watelain, E., Faupin, A., Pinti, A., Jarraya, M., & Garnier, C. (2016). Adaptability and prediction of anticipatory muscular activity parameters to different movements in the sitting position. Perceptual and Motor Skills, 123(1), 190231. https://doi.org/10.1177/0031512516656817

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claudino, R., dos Santos, E.C., & Santos, M.J. (2013). Compensatory but not anticipatory adjustments are altered in older adults during lateral postural perturbations. Clinical Neurophysiology, 124(8), 16281637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coelho, D.B., & Teixeira, L.A. (2017). Cognition and balance control: Does processing of explicit contextual cues of impending perturbations modulate automatic postural responses? Experimental Brain Research, 235(8), 23752390. https://doi.org/10.1007/s00221-017-4980-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coelho, D.B., & Teixeira, L.A. (2018). Disambiguating the cognitive and adaptive effects of contextual cues of an impending balance perturbation. Human Movement Science, 61, 9098. https://doi.org/10.1016/j.humov.2018.07.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coelho, D.B., Silva, M.B., de Lima-Pardini, A.C., Martinelli, A.R., da Silva Baptista, T., Ramos, R.T., & Teixeira, L.A. (2018). Young and older adults adapt automatic postural responses equivalently to repetitive perturbations but are unable to use predictive cueing to optimize recovery of balance stability. Neuroscience Letters, 685, 167172. https://doi.org/10.1016/j.neulet.2018.08.043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Nunzio, A.M., Nardone, A., & Schieppati, M. (2005). Head stabilization on a continuously oscillating platform: The effect of a proprioceptive disturbance on the balancing strategy. Experimental Brain Research, 165(2), 261272. https://doi.org/10.1007/s00221-005-2297-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimitrova, D., Horak, F.B., & Nutt, J.G. (2004). Postural muscle responses to multidirectional translations in patients with Parkinson’s disease. Journal of Neurophysiology, 91(1), 489501. https://doi.org/10.1152/jn.00094.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckerle, J.J., Berg, W.P., & Ward, R.M. (2012). The effect of load uncertainty on anticipatory muscle activity in catching. Experimental Brain Research, 220(3–4), 311318. https://doi.org/10.1007/s00221-012-3139-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forghani, A., Preuss, R., & Milner, T. (2017a). Postural response characterization of standing humans to multi-directional, predictable and unpredictable perturbations to the arm. Journal of Electromyography and Kinesiology, 32, 8392. https://doi.org/10.1016/j.jelekin.2016.12.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forghani, A., Preuss, R., & Milner, T.E. (2017b). Effects of amplitude and predictability of perturbations to the arm on anticipatory and reactionary muscle responses to maintain balance. Journal of Electromyography and Kinesiology, 35, 3039. https://doi.org/10.1016/j.jelekin.2017.05.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilles, M., Wing, A.M., & Kirker, S.G. (1999). Lateral balance organisation in human stance in response to a random or predictable perturbation. Experimental Brain Research, 124(2), 137144. https://doi.org/10.1007/s002210050607

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodworth, A.D., & Peterka, R.J. (2009). Contribution of sensorimotor integration to spinal stabilization in humans. Journal of Neurophysiology, 102(1), 496512. https://doi.org/10.1152/jn.00118.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerraz, M., & Day, B.L. (2005). Expectation and the vestibular control of balance. Journal of Cognitive Neuroscience, 17(3), 463469. https://doi.org/10.1162/0898929053279540

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasson, C.J., Caldwell, G.E., & Van Emmerik, R.E. (2009). Scaling of plantarflexor muscle activity and postural time-to-contact in response to upper-body perturbations in young and older adults. Experimental Brain Research, 196(3), 413427. https://doi.org/10.1007/s00221-009-1865-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henry, S.M., Fung, J., & Horak, F.B. (1998). EMG Responses to Maintain Stance During Multidirectional Surface Translations. Journal of Neurophysiology, 80(4), 19391950. https://doi.org/10.1152/jn.1998.80.4.1939

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F.B., & Diener, H.C. (1994). Cerebellar control of postural scaling and central set in stance. Journal of Neurophysiology, 72(2), 479493. https://doi.org/10.1152/jn.1994.72.2.479

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F.B., Diener, H.C., & Nashner, L.M. (1989). Influence of central set on human postural responses. Journal of Neurophysiology, 62(4), 841853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horak, F.B., & Nashner, L.M. (1986). Central programming of postural movements: Adaptation to altered support-surface configurations. Journal of Neurophysiology, 55(6), 13691381. https://doi.org/10.1152/jn.1986.55.6.1369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iodice, P., Cesinaro, S., Romani, G.L., & Pezzulo, G. (2015). More gain less pain: Balance control learning shifts the activation patterns of leg and neck muscles and increases muscular parsimony. Experimental Brain Research, 233(7), 21032114. https://doi.org/10.1007/s00221-015-4281-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jagdhane, S., Kanekar, N., & Aruin, A.S. (2016). The effect of a four-week balance training program on anticipatory postural adjustments in older adults: A pilot feasibility study. Current Aging Science, 9(4), 295300. https://doi.org/10.2174/1874609809666160413113443

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S.L., Henry, S.M., Raasch, C.C., Hitt, J.R., & Bunn, J.Y. (2008). Responses to multi-directional surface translations involve redistribution of proximal versus distal strategies to maintain upright posture. Experimental Brain Research, 187(3), 407417. https://doi.org/10.1007/s00221-008-1312-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaewmanee, T., Liang, H., & Aruin, A.S. (2020). Effect of predictability of the magnitude of a perturbation on anticipatory and compensatory postural adjustments. Experimental Brain Research, 238(10), 22072219. https://doi.org/10.1007/s00221-020-05883-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanekar, N., & Aruin, A.S. (2014a). Aging and balance control in response to external perturbations: Role of anticipatory and compensatory postural mechanisms. Age, 36(3), 9621. https://doi.org/10.1007/s11357-014-9621-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanekar, N., & Aruin, A.S. (2014b). The effect of aging on anticipatory postural control. Experimental Brain Research, 232(4), 11271136. https://doi.org/10.1007/s00221-014-3822-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanekar, N., & Aruin, A.S. (2015). Improvement of anticipatory postural adjustments for balance control: Effect of a single training session. Journal of Electromyography and Kinesiology, 25(2), 400405. https://doi.org/10.1016/j.jelekin.2014.11.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, A., Guevel, A., & Sveistrup, H. (2012). Impact of ankle muscle fatigue and recovery on the anticipatory postural adjustments to externally initiated perturbations in dynamic postural control. Experimental Brain Research, 223(4), 553562. https://doi.org/10.1007/s00221-012-3282-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunimura, H., Matsuoka, M., Hamada, N., & Hiraoka, K. (2019). Effort to perceive the position of one visual horizontal line relative to another appearing close causes an earlier postural response to backward perturbation. Neuroreport, 30(3), 151156. https://doi.org/10.1097/WNR.0000000000001175

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laessoe, U., & Voigt, M. (2008). Anticipatory postural control strategies related to predictive perturbations. Gait & Posture, 28(1), 6268. https://doi.org/10.1016/j.gaitpost.2007.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Mouel, C., Tisserand, R., Robert, T., & Brette, R. (2019). Postural adjustments in anticipation of predictable perturbations allow elderly fallers to achieve a balance recovery performance equivalent to elderly non-fallers. Gait & Posture, 71, 131137. https://doi.org/10.1016/j.gaitpost.2019.04.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, H., Kaewmanee, T., & Aruin, A.S. (2020). The role of an auditory cue in generating anticipatory postural adjustments in response to an external perturbation. Experimental Brain Research, 238(3), 631641. https://doi.org/10.1007/s00221-020-05738-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massion, J. (1992). Movement, posture and equilibrium: Interaction and coordination. Progress in Neurobiology, 38(1), 3556. https://doi.org/10.1016/0301-0082(92)90034-C

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohapatra, S., & Aruin, A.S. (2013). Static and dynamic visual cues in feed-forward postural control. Experimental Brain Research, 224(1), 2534. https://doi.org/10.1007/s00221-012-3286-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohapatra, S., Krishnan, V., & Aruin, A.S. (2012a). Postural control in response to an external perturbation: Effect of altered proprioceptive information. Experimental Brain Research, 217(2), 197208. https://doi.org/10.1007/s00221-011-2986-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohapatra, S., Krishnan, V., & Aruin, A.S. (2012b). The effect of decreased visual acuity on control of posture. Clinical Neurophysiology, 123(1), 173182. https://doi.org/10.1016/j.clinph.2011.06.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohapatra, S., Kukkar, K.K., & Aruin, A.S. (2014). Support surface related changes in feedforward and feedback control of standing posture. Journal of Electromyography and Kinesiology, 24(1), 144152. https://doi.org/10.1016/j.jelekin.2013.10.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., Tsuchida, T., & Mano, Y. (2001). The assessment of posture control in the elderly using the displacement of the center of pressure after forward platform translation. Journal of Electromyography and Kinesiology, 11(6), 395403. https://doi.org/10.1016/S1050-6411(01)00016-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pai, Y.C., Rogers, M.W., Patton, J., Cain, T.D., & Hanke, T.A. (1998). Static versus dynamic predictions of protective stepping following waist-pull perturbations in young and older adults. Journal of Biomechanics, 31(12), 11111118. https://doi.org/10.1016/S0021-9290(98)00124-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollock, A.S., Durward, B.R., Rowe, P.J., & Paul, J.P. (2000). What is balance? Clinical Rehabilitation, 14(4), 402406. https://doi.org/10.1191/0269215500cr342oa

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reginella, R.L., Redfern, M.S., & Furman, J.M. (1999). Postural sway with earth-fixed and body-referenced finger contact in young and older adults. Journal of Vestibular Research: Equilibrium & Orientation, 9(2), 103109. https://doi.org/10.3233/VES-1999-9204

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos, M.J., Kanekar, N., & Aruin, A.S. (2010a). The role of anticipatory postural adjustments in compensatory control of posture: 1. Electromyographic analysis. Journal of Electromyography and Kinesiology, 20(3), 388397. https://doi.org/10.1016/j.jelekin.2009.06.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos, M.J., Kanekar, N., & Aruin, A.S. (2010b). The role of anticipatory postural adjustments in compensatory control of posture: 2. Biomechanical analysis. Journal of Electromyography and Kinesiology, 20(3), 398405. https://doi.org/10.1016/j.jelekin.2010.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, M., & Sozzi, S. (2016). Temporal features of postural adaptation strategy to prolonged and repeatable balance perturbation. Neuroscience Letters, 628, 110115. https://doi.org/10.1016/j.neulet.2016.06.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, M., Bottaro, A., Sozzi, S., & Schieppati, M. (2011). Adaptation to continuous perturbation of balance: Progressive reduction of postural muscle activity with invariant or increasing oscillations of the center of mass depending on perturbation frequency and vision conditions. Human Movement Science, 30(2), 262278. https://doi.org/10.1016/j.humov.2011.02.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, M., Nardone, A., De Nunzio, A.M., Schmid, M., & Schieppati, M. (2007). Equilibrium during static and dynamic tasks in blind subjects: No evidence of cross-modal plasticity. Brain: A Journal of Neurology, 130(8), 20972107. https://doi.org/10.1093/brain/awm157

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiratori, T., & Latash, M.L. (2001). Anticipatory postural adjustments during load catching by standing subjects. Clinical Neurophysiology, 112(7), 12501265. https://doi.org/10.1016/S1388-2457(01)00553-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B.A., Jacobs, J.V., & Horak, F.B. (2014). Effects of amplitude cueing on postural responses and preparatory cortical activity of people with Parkinson disease. Journal of Neurologic Physical Therapy, 38(4), 207215. https://doi.org/10.1097/NPT.0000000000000058

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sousa, A.S., Macedo, R., Santos, R., & Tavares, J.M. (2013). Influence of wearing an unstable shoe construction on compensatory control of posture. Human Movement Science, 32(6), 13531364. https://doi.org/10.1016/j.humov.2013.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sozzi, S., Nardone, A., & Schieppati, M. (2016). Calibration of the leg muscle responses elicited by predictable perturbations of stance and the effect of vision. Frontiers in Human Neuroscience, 10, 419. https://doi.org/10.3389/fnhum.2016.00419

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sozzi, S., Nardone, A., & Schieppati, M. (2020). Adaptation of balancing behaviour during continuous perturbations of stance. Supra-postural visual tasks and platform translation frequency modulate adaptation rate. PLoS One, 15(7), e0236702. https://doi.org/10.1371/journal.pone.0236702

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stål, F., Fransson, P.A., Magnusson, M., & Karlberg, M. (2003). Effects of hypothermic anesthesia of the feet on vibration-induced body sway and adaptation. Journal of Vestibular Research: Equilibrium & Orientation, 13(1), 3952. https://doi.org/10.3233/VES-2003-13105

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talis, V.L., & Solopova, I.A. (2000). Vibration-induced postural reaction continues after the contact with additional back support. Motor Control, 4(4), 407419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, C., Bélanger, M., & Fung, J. (2007). Effects of bilateral Achilles tendon vibration on postural orientation and balance during standing. Clinical Neurophysiology, 118(11), 24562467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, C., Bélanger, M., & Fung, J. (2011). Effects of plantar cutaneo-muscular and tendon vibration on posture and balance during quiet and perturbed stance. Human Movement Science, 30(2), 153171. https://doi.org/10.1016/j.humov.2010.04.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokuno, C.D., Cresswell, A.G., Thorstensson, A., & Carpenter, M.G. (2010). Age-related changes in postural responses revealed by support-surface translations with a long acceleration-deceleration interval. Clinical Neurophysiology, 121(1), 109117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Ooteghem, K., Frank, J.S., & Horak, F.B. (2009). Practice-related improvements in posture control differ between young and older adults exposed to continuous, variable amplitude oscillations of the support surface. Experimental Brain Research, 199(2), 185193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, T.B., & Tokuno, C.D. (2013). The influence of handrail predictability on compensatory arm reactions in response to a loss of balance. Gait & Posture, 38(2), 293298. https://doi.org/10.1016/j.gaitpost.2012.12.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welch, T.D.J., & Ting, L.H. (2014). Mechanisms of motor adaptation in reactive balance control. PLoS One, 9(5), e96440. https://doi.org/10.1371/journal.pone.0096440

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, L., & Wang, J. (2019). Anticipatory and compensatory postural adjustments in response to loading perturbation of unknown magnitude. Experimental Brain Research, 237(1), 173180. https://doi.org/10.1007/s00221-018-5397-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamagata, M., Falaki, A., & Latash, M.L. (2018). Stability of vertical posture explored with unexpected mechanical perturbations: Synergy indices and motor equivalence. Experimental Brain Research, 236(5), 15011517. https://doi.org/10.1007/s00221-018-5239-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yungher, D.A., Morgia, J., Bair, W.N., Inacio, M., Beamer, B.A., Prettyman, M.G., & Rogers, M.W. (2012). Short-term changes in protective stepping for lateral balance recovery in older adults. Clinical Biomechanics, 27(2), 151157.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2849 2822 262
Full Text Views 28 27 0
PDF Downloads 52 50 0