Reaching Movements With Limb-Based Visual Feedback

Click name to view affiliation

Fatemeh Zahed Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL, USA

Search for other papers by Fatemeh Zahed in
Current site
Google Scholar
PubMed
Close
*
and
Max Berniker Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL, USA

Search for other papers by Max Berniker in
Current site
Google Scholar
PubMed
Close
Restricted access

Reaches in experimental settings are commonly found to be straight. This straightness is robust to physical, but not visual, perturbations. Here, we question whether typical visual feedback contributes to this finding by implicitly promoting straight movements. To do so, we replaced the conventional feedback depicting the hand’s location with feedback depicting the limb’s orientation. Reaching movements with three different visual feedback conditions were examined. In the final condition, the subject’s arm was depicted as two rotating links, and targets were depicted as two links indicating a desired arm posture. We found that by replacing standard cursor feedback, reaches became curved and arched to the target. Our findings further demonstrate that depicted feedback influences movements, and feedback depicting the limb, in particular, may elicit curved reaches.

  • Collapse
  • Expand
  • Abend, W., Bizzi, E., & Morasso, P. (1982). Human arm trajectory formation. Brain, 105(2), 331348. https://doi.org/10.1093/brain/105.2.331

  • Ahmed, A.A., Wolpert, D.M., & Flanagan, J.R. (2008). Flexible representations of dynamics are used in object manipulation. Current Biology, 18(10), 763768. https://doi.org/10.1016/j.cub.2008.04.061

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, R.M.N. (1997). A minimum energy cost hypothesis for human arm trajectories. Biological Cybernetics, 76(2), 97105. https://doi.org/10.1007/s004220050324

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arce, F., Novick, I., Shahar, M., Link, Y., Ghez, C., & Vaadia, E. (2009). Differences in context and feedback result in different trajectories and adaptation strategies in reaching. PLoS One, 4(1), Article e0004214. https://doi.org/10.1371/journal.pone.0004214

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berniker, M., Franklin, D.W., Flanagan, J.R., Wolpert, D.M., & Kording, K. (2014). Motor learning of novel dynamics is not represented in a single global coordinate system: Evaluation of mixed coordinate representations and local learning. Journal of Neurophysiology, 111(6), 11651182. https://doi.org/10.1152/jn.00493.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berniker, M., Jarc, A., Bizzi, E., & Tresch, M.C. (2009). Simplified and effective motor control based on muscle synergies to exploit musculoskeletal dynamics. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 76017606. https://doi.org/10.1073/pnas.0901512106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berniker, M., Mirzaei, H., & Kording, K.P. (2014). The effects of training breadth on motor generalization. Journal of Neurophysiology, 112(11), 27912798. https://doi.org/10.1152/jn.00615.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenner, E., de Graaf, M.L., Stam, M.J., Schonwetter, M., Smeets, J.B., & van Beers, R.J. (2020). When is moving a cursor with a computer mouse intuitive? Perception, 49(4), 484487. https://doi.org/10.1177/0301006620915152

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clauser, C.E., McConville, J.T., & Young, J.W. (1969). Weight, volume, and center of mass of segments of the human body. National Technical Information Service. https://doi.org/10.21236/ad0710622

    • Search Google Scholar
    • Export Citation
  • Danziger, Z., & Mussa-Ivaldi, F.A. (2012). The influence of visual motion on motor learning. Journal of Neuroscience, 32(29), 98599869. https://doi.org/10.1523/JNEUROSCI.5528-11.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Grave, D.D., Brenner, E., & Smeets, J.B. (2004). Illusions as a tool to study the coding of pointing movements. Experimental Brain Research, 155(1), 5662. https://doi.org/10.1007/s00221-003-1708-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doke, J., & Kuo, A.D. (2007). Energetic cost of producing cyclic muscle force, rather than work, to swing the human leg. Journal of Experimental Biology, 210(13), 23902398. https://doi.org/10.1242/jeb.02782

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farshchiansadegh, A., Melendez-Calderon, A., Ranganathan, R., Murphey, T.D., & Mussa-Ivaldi, F.A. (2016). Sensory agreement guides kinetic energy optimization of arm movements during object manipulation. PLoS Computational Biology, 12(4), 19. https://doi.org/10.1371/journal.pcbi.1004861

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanagan, J.R., & Rao, A.K. (1995). Trajectory adaptation to a nonlinear visuomotor transformation: Evidence of motion planning in visually perceived space. Journal of Neurophysiology, 74(5), 21742178. https://doi.org/10.1152/jn.1995.74.5.2174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flash, T., & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. The Journal of Neuroscience, 5(7), 16881703. https://doi.org/4020415

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kistemaker, D.A., Wong, J.D., & Gribble, P.L. (2010). The central nervous system does not minimize energy cost in arm movements. Journal of Neurophysiology, 104(6), 29852994. https://doi.org/10.1152/jn.00483.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2021). Laws of nature that define biological action and perception. Physics of Life Reviews, 36, 4767. https://doi.org/10.1016/j.plrev.2020.07.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42(2), 223227. https://doi.org/10.1007/BF00236911

  • Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gomi, H., Yoshioka, T., & Kawato, M. (1999). Quantitative examinations of internal representations for arm trajectory planning: Minimum commanded torque change model. Journal of Neurophysiology, 81(5), 21402155. https://doi.org/10.1152/jn.1999.81.5.2140

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, W.L. (1983). Physical principles for economies of skilled movements. Biological Cybernetics, 46(2), 135147. https://doi.org/10.1007/BF00339982

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijhof, E.-J., & Kouwenhoven, E. (2011). Simulation of multijoint arm movements. In Biomechanics and neural control of posture and movement (pp. 363372). New York, NY: Springer. https://doi.org/10.1007/978-1-4612-2104-3_29

    • Search Google Scholar
    • Export Citation
  • Oldfield, R. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97113. https://doi.org/10.1016/0028-3932(71)90067-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prilutsky, B.I. (2021). How to distinguish between referent configuration and internal models hypotheses of motor control? Comment on “Laws of nature that define biological action and perception” by M. Latash. Physics of Life Reviews, 37, 12. https://doi.org/10.1016/j.plrev.2021.02.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rome, L.C., & Lindstedt, S.L. (2017). The quest for speed: Muscles built for high-frequency contractions. Physiology, 13(6), 261268. https://doi.org/10.1152/physiologyonline.1998.13.6.261

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenbaum, D.A., Loukopoulos, L.D., Vaughan, J., Meulenbroek, R.G.J., & Engelbrecht, S E. (1995). Planning reaches by evaluating stored postures. Psychological Review, 102(1), 2867. https://doi.org/10.1037/0033-295X.102.1.28

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shadmehr, R., & Mussa-Ivaldi, F.A. (1994). Adaptive representation of dynamics during learning of a motor task. The Journal of Neuroscience, 14(5), 32083224. https://doi.org/10.1523/JNEUROSCI.14-05-03208.1994

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smeets, J.B., van den Dobbelsteen, J.J., de Grave, D.D., van Beers, R.J., & Brenner, E. (2006). Sensory integration does not lead to sensory calibration. Proceedings of the National Academy of Sciences of the United States of America, 103(49), 1878118786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907915. https://doi.org/10.1038/nn1309

  • Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and control of optimal trajectory in human multijoint arm movement. Biological Cybernetics, 61(2), 89101. https://doi.org/10.1007/BF00204593

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Graaff, M.C., Brenner, E., & Smeets, J.B. (2014). Differences in curvature between constrained and unconstrained goal-directed movements to haptic targets. Experimental Brain Research, 232(11), 34453451. https://doi.org/10.1007/s00221-014-4030-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, M. (1993). Biomechanics of human motion. American Journal of Physical Medicine & Rehabilitation, 72(5), 336. https://doi.org/10.1097/00002060-199310000-00022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, J.E., Meek, S.G., & Jacobsen, S.C. (1989a). Quantitation of human shoulder anatomy for prosthetic arm control-I. Surface modelling. Journal of Biomechanics, 22(3), 273292. https://doi.org/10.1016/0021-9290(89)90094-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, J.E., Meek, S.G., & Jacobsen, S.C. (1989b). Quantitation of human shoulder anatomy for prosthetic arm control-II. Anatomy matrices. Journal of Biomechanics, 22(4), 309325. https://doi.org/10.1016/0021-9290(89)90045-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zahed, F., & Berniker, M. (2018). Visual feedback of hand and target location does not explain the tendency for straight adapted reaches. PLoS One, 13(10), Article 0206116. https://doi.org/10.1371/journal.pone.0206116

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1110 585 18
Full Text Views 278 40 16
PDF Downloads 111 3 0