Interfinger Synchronization Capability of Paired Fingers in Discrete Fine-Force Control Tasks

Click name to view affiliation

Cong Peng China Institute of Marine Technology and Economy, Beijing, China

Search for other papers by Cong Peng in
Current site
Google Scholar
PubMed
Close
,
Na Yao School of Astronautics, Beihang University, Beijing, China
Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, China

Search for other papers by Na Yao in
Current site
Google Scholar
PubMed
Close
,
Xin Wang China Institute of Marine Technology and Economy, Beijing, China

Search for other papers by Xin Wang in
Current site
Google Scholar
PubMed
Close
, and
Dangxiao Wang State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
Peng Cheng Laboratory, Shenzhen, China

Search for other papers by Dangxiao Wang in
Current site
Google Scholar
PubMed
Close
*
Restricted access

This study examined whether within-a-hand and between-hands finger pairings would exhibit different interfinger synchronization capabilities in discrete fine-force control tasks. Participants were required to perform the designed force control tasks using finger pairings of index and middle fingers on one or two hands. Results demonstrated that the delayed reaction time and the timing difference of paired fingers showed a significant difference among finger pairings. In particular, paired fingers exhibited less delayed reaction time and timing difference in between-hands finger pairings than in within-a-hand finger pairings. Such bimanual advantage of the pairings with two symmetric fingers was evident only in the task types with relatively high amplitudes. However, for a given finger pairing, the asymmetric amplitude configuration, assigning a relatively higher amplitude to either left or right finger of paired fingers, has no significant effect on the interfinger synchronization. Therefore, paired fingers on both hands showed a bimanual advantage in the relatively high force, especially for the pairing of symmetrical fingers, whereas asymmetric amplitude configuration for a finger pairing was able to suppress the bimanual advantage. These findings would enrich the understanding of the interfinger synchronization capability of paired fingers and be referential for interactive engineering applications when leveraging the interfinger synchronization capability in discrete fine-force control tasks.

  • Collapse
  • Expand
  • Aoki, T., Francis, P.R., & Kinoshita, H. (2003). Differences in the abilities of individual fingers during the performance of fast, repetitive tapping movements. Experimental Brain Research, 152(2), 270280. https://doi.org/10.1007/s00221-003-1552-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckingham, G., & Carey, D.P. (2009). Rightward biases during bimanual reaching. Experimental Brain Research, 194(2), 197206. https://doi.org/10.1007/s00221-008-1689-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cincotta, M., & Ziemann, U. (2008). Neurophysiology of unimanual motor control and mirror movements. Clinical Neurophysiology, 119(4), 744762. https://doi.org/10.1016/j.clinph.2007.11.047

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, L. (1971). Synchronous bimanual movements performed by homologous and non-homologous muscles. Perceptual and Motor Skills, 32(2), 639644. https://doi.org/10.2466/pms.1971.32.2.639

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boer, B.J., Peper, C.L., & Beek, P.J. (2013). Learning a new bimanual coordination pattern: Interlimb interactions, attentional focus, and transfer. Journal of Motor Behavior, 45(1), 6577. https://doi.org/10.1080/00222895.2012.744955

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diedrichsen, J., Hazeltine, E., Nurss, W.K., & Ivry, R.B. (2003). The role of the corpus callosum in the coupling of bimanual isometric force pulses. Journal of Neurophysiology, 90(4), 24092418. https://doi.org/10.1152/jn.00250.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmour Reeve, T., & Proctor, R.W. (1988). Determinants of two-choice reaction-time patterns for same-hand and different-hand finger pairings. Journal of Motor Behavior, 20(3), 317340. https://doi.org/10.1080/00222895.1988.10735448

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorniak, S.L., Duarte, M., & Latash, M.L. (2008). Do synergies improve accuracy? A study of speed-accuracy trade-offs during finger force production. Motor Control, 12(2), 151172. https://doi.org/10.1123/mcj.12.2.151

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutnik, B., Hudson, C.G., & Nicholson, J. (2009). Intermanual temporal differences in bimanual simple isometric coupling by instructions. Perceptual and Motor Skills, 108(3), 836850. https://doi.org/10.2466/PMS.108.3.836-850

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasbroucq, T., Mouret, I., Seal, J., & Akamatsu, M. (1995). Finger pairings in two-choice reaction time tasks: Does the between-hands advantage reflect response preparation? Journal of Motor Behavior, 27(3), 251262. https://doi.org/10.1080/00222895.1995.9941715

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmuth, L.L., & Ivry, R.B. (1996). When two hands are better than one: Reduced timing variability during bimanual movements. Journal of Experimental Psychology: Human Perception and Performance, 22(2), 278293. https://doi.org/10.1037/0096-1523.22.2.278

    • Search Google Scholar
    • Export Citation
  • Hu, X., & Newell, K.M. (2011). Dependence of asymmetrical interference on task demands and hand dominance in bimanual isometric force tasks. Experimental Brain Research, 208(4), 533541. https://doi.org/10.1007/s00221-010-2502-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, X., & Newell, K.M. (2012). Asymmetric interference associated with force amplitude and hand dominance in bimanual constant isometric force. Motor Control, 16(3), 297316. https://doi.org/10.1123/mcj.16.3.297

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inui, N. (2005). Coupling of force variability in bimanual tapping with asymmetrical force. Motor Control, 9(2), 164179. https://doi.org/10.1123/mcj.9.2.164

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inui, N., & Hatta, H. (2002). Asymmetric control of force and symmetric control of timing in bimanual finger tapping. Human Movement Science, 21(2), 131146. https://doi.org/10.1016/S0167-9457(02)00094-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janczyk, M., Skirde, S., Weigelt, M., & Kunde, W. (2009). Visual and tactile action effects determine bimanual coordination performance. Human Movement Science, 28(4), 437449. https://doi.org/10.1016/j.humov.2009.02.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, K.A., Cunnington, R., Bradshaw, J.L., Phillips, J.G., Iansek, R., & Rogers, M.A. (1998). Bimanual co-ordination in Parkinson’s disease. Brain, 121(4), 743753. https://doi.org/10.1093/brain/121.4.743

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelso, J.S., Southard, D.L., & Goodman, D. (1979). On the coordination of two-handed movements. Journal of Experimental Psychology: Human Perception and Performance, 5(2), 229238. https://doi.org/10.1037/0096-1523.5.2.229

    • Search Google Scholar
    • Export Citation
  • Kim, S.W., Shim, J.K., Zatsiorsky, V.M., & Latash, M.L. (2008). Finger inter-dependence: Linking the kinetic and kinematic variables. Human Movement Science, 27(3), 408422. https://doi.org/10.1016/j.humov.2007.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, A.C., & Newell, K.M. (2014). Practice and transfer of the frequency structures of continuous isometric force. Human Movement Science, 34, 2840. https://doi.org/10.1016/j.humov.2014.03.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kornblum, S. (1965). Response competition and/or inhibition in two-choice reaction time. Psychonomic Science, 2(1), 5556. https://doi.org/10.3758/BF03343326

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, V., & Jaric, S. (2010). Effects of task complexity on coordination of inter-limb and within-limb forces in static bimanual manipulation. Motor Control, 14(4), 528544. https://doi.org/10.1123/mcj.14.4.528

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., Danion, F., Latash, M.L., Li, Z.M., & Zatsiorsky, V.M. (2001). Bilateral deficit and symmetry in finger force production during two-hand multifinger tasks. Experimental Brain Research, 141(4), 530540. https://doi.org/10.1007/s002210100893

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z.M., Latash, M.L., Newell, K.M., & Zatsiorsky, V.M. (1998). Motor redundancy during maximal voluntary contraction in four-finger tasks. Experimental Brain Research, 122(1), 7178. https://doi.org/10.1007/s002210050492

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marteniuk, R.G., MacKenzie, C.L., & Baba, D.M. (1984). Bimanual movement control: Information processing and interaction effects. The Quarterly Journal of Experimental Psychology Section A, 36(2), 335365. https://doi.org/10.1080/14640748408402163

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechsner, F., & Knoblich, G. (2004). Do muscles matter for coordinated action? Journal of Experimental Psychology: Human Perception and Performance, 30(3), 490503. https://doi.org/10.1037/0096-1523.30.3.490

    • Search Google Scholar
    • Export Citation
  • Morrison, S., & Newell, K.M. (1998). Interlimb coordination as a function of isometric force output. Journal of Motor Behavior, 30(4), 323342. https://doi.org/10.1080/00222899809601347

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, K., Kleiser, R., Mechsner, F., & Seitz, R.J. (2009). Perceptual influence on bimanual coordination: An fMRI study. European Journal of Neuroscience, 30(1), 116124. https://doi.org/10.1111/j.1460-9568.2009.06802.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Njiokiktjien, C., De Sonneville, L., Hessels, M., Kurgansky, A., Vildavsky, V., & Vranken, M. (1997). Unimanual and bimanual simultaneous fingertapping in schoolchildren: Developmental aspects and hand preference-related asymmetries. Laterality, 2(2), 117135. https://doi.org/10.1080/713754265

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohki, Y., & Johansson, R.S. (1999). Sensorimotor interactions between pairs of fingers in bimanual and unimanual manipulative tasks. Experimental Brain Research, 127(1), 4353. https://doi.org/10.1007/s002210050772

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overvliet, K.E., Smeets, J.B.J., & Brenner, E. (2010). Serial search for fingers of the same hand but not for fingers of different hands. Experimental Brain Research, 202(1), 261264. https://doi.org/10.1007/s00221-009-2127-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, C., Peng, W., Feng, W., Zhang, Y., Xiao, J., & Wang, D. (2021). EEG correlates of sustained attention variability during discrete multi-finger force control tasks. IEEE Transactions on Haptics, 14(3), 526537. https://doi.org/10.1109/TOH.2021.3055842

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, C., Wang, D., & Zhang, Y. (2019). Quantifying differences among ten fingers in force control capabilities by a modified Meyer model. Symmetry, 11(9), 118. https://doi.org/10.3390/sym11091109

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rendl, C., Greindl, P., Probst, K., Behrens, M., & Haller, M. (2014). Presstures: Exploring pressure-sensitive multi-touch gestures on trackpads. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/2556288.2557146

    • Search Google Scholar
    • Export Citation
  • Repp, B.H., & Su, Y.-H. (2013). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin & Review, 20(3), 403452. https://doi.org/10.3758/s13423-012-0371-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sainburg, R.L. (2002). Evidence for a dynamic-dominance hypothesis of handedness. Experimental Brain Research, 142(2), 241258. https://doi.org/10.1007/s00221-001-0913-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serrien, D.J., Cassidy, M.J., & Brown, P. (2003). The importance of the dominant hemisphere in the organization of bimanual movements. Human Brain Mapping, 18(4), 296305. https://doi.org/10.1002/hbm.10086

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slifkin, A.B., & Newell, K.M. (2000). Variability and noise in continuous force production. Journal of Motor Behavior, 32(2), 141150. https://doi.org/10.1080/00222890009601366

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinnen, S.P., & Wenderoth, N. (2004). Two hands, one brain: Cognitive neuroscience of bimanual skill. Trends in Cognitive Sciences, 8(1), 1825. https://doi.org/10.1016/j.tics.2003.10.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor Tavares, A.L., Jefferis, G.S.X.E., Koop, M., Hill, B.C., Hastie, T., Heit, G., & Bronte-Stewart, H.M. (2005). Quantitative measurements of alternating finger tapping in Parkinson’s disease correlate with UPDRS motor disability and reveal the improvement in fine motor control from medication and deep brain stimulation. Movement Disorders, 20(10), 12861298. https://doi.org/10.1002/mds.20556

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tazoe, T., Sasada, S., Sakamoto, M., & Komiyama, T. (2013). Modulation of interhemispheric interactions across symmetric and asymmetric bimanual force regulations. European Journal of Neuroscience, 37(1), 96104. https://doi.org/10.1111/ejn.12026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Térémetz, M., Colle, F., Hamdoun, S., Maier, M.A., & Lindberg, P.G. (2015). A novel method for the quantification of key components of manual dexterity after stroke. Journal of Neuroengineering and Rehabilitation, 12(64), 116. https://doi.org/10.1186/s12984-015-0054-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vingerhoets, G., Acke, F., Alderweireldt, A.-S., Nys, J., Vandemaele, P., & Achten, E. (2012). Cerebral lateralization of praxis in right- and left-handedness: Same pattern, different strength. Human Brain Mapping, 33(4), 763777. https://doi.org/10.1002/hbm.21247

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viviani, P., Perani, D., Grassi, F., Bettinardi, V., & Fazio, F. (1998). Hemispheric asymmetries and bimanual asynchrony in left- and right-handers. Experimental Brain Research, 120(4), 531536. https://doi.org/10.1007/s002210050428

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenderoth, N., Debaere, F., Sunaert, S., & Swinnen, S.P. (2005). The role of anterior cingulate cortex and precuneus in the coordination of motor behaviour. European Journal of Neuroscience, 22(1), 235246. https://doi.org/10.1111/j.1460-9568.2005.04176.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitall, J., Forrester, L., & Song, S. (1999). Dual-finger preferred-speed tapping: Effects of coordination mode and anatomical finger and limb pairings. Journal of Motor Behavior, 31(4), 325339. https://doi.org/10.1080/00222899909600998

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiesendanger, M., Kaluzny, P., Kazennikov, O., Palmeri, A., & Perrig, S. (1994). Temporal coordination in bimanual actions. Canadian Journal of Physiology and Pharmacology, 72(5), 591594. https://doi.org/10.1139/y94-084

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A.M. (1982). Timing and co-ordination of repetitive bimanual movements. The Quarterly Journal of Experimental Psychology Section A, 34(3), 339348. https://doi.org/10.1080/14640748208400847

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoe, M., Okuno, R., Hamasaki, T., Kurachi, Y., Akazawa, K., & Sakoda, S. (2009). Opening velocity, a novel parameter, for finger tapping test in patients with Parkinson’s disease. Parkinsonism & Related Disorders, 15(6), 440444. https://doi.org/10.1016/j.parkreldis.2008.11.003

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 931 430 17
Full Text Views 147 56 3
PDF Downloads 61 3 0