Optimality, Stability, and Agility of Human Movement: New Optimality Criterion and Trade-Offs

in Motor Control

Click name to view affiliation

Mark L. LatashDepartment of Kinesiology, The Pennsylvania State University, University Park, PA, USA

Search for other papers by Mark L. Latash in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3102-2571*
Restricted access

This review of movement stability, optimality, and agility is based on the theory of motor control with changes in spatial referent coordinates for the effectors, the principle of abundance, and the uncontrolled manifold hypothesis. A new optimality principle is suggested based on the concept of optimal sharing corresponding to a vector in the space of elemental variables locally orthogonal to the uncontrolled manifold. Motion along this direction is associated with minimal components along the relatively unstable directions within the uncontrolled manifold leading to a minimal motor equivalent motion. For well-practiced actions, this task-specific criterion is followed in spaces of referent coordinates. Consequences of the suggested framework include trade-offs among stability, optimality, and agility, unintentional changes in performance, hand dominance, finger specialization, individual traits in performance, and movement disorders in neurological patients.

Address author correspondence to mll11@psu.edu., https://orcid.org/0000-0003-3102-2571

  • Collapse
  • Expand
  • Abolins, V., & Latash, M.L. (2021). The nature of finger enslaving: New results and their implications. Motor Control, 25(4), 680703. https://doi.org/10.1123/mc.2021-0044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Abolins, V., & Latash, M.L. (2022a). Unintentional force drifts across the human fingers: Implications for the neural control of finger tasks. Experimental Brain Research. Advance online publication. https://doi.org/10.1007/s00221-021-06287-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Abolins, V., & Latash, M.L. (2022b). Unintentional force drifts as consequences of indirect force control with spatial referent coordinates. Neuroscience, 481, 156165. https://doi.org/10.1016/j.neuroscience.2021.11.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Abolins, V., Stremoukhov, A., Walter, C., & Latash, M.L. (2020). On the origin of finger enslaving: Control with referent coordinates and effects of visual feedback. Journal of Neurophysiology, 124(6), 16251636. https://doi.org/10.1152/jn.00322.2020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Abram, S.J., Selinger, J.C., & Donelan, J.M. (2019). Energy optimization is a major objective in the real-time control of step width in human walking. Journal of Biomechanics, 91, 8591. https://doi.org/10.1016/j.jbiomech.2019.05.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ajemian, R., D’Ausilio, A., Moorman, H., & Bizzi, E. (2013). A theory for how sensorimotor skills are learned and retained in noisy and nonstationary neural circuits. Proceedings of the National Academy of Sciences USA, 110(52), E5078E5087. https://doi.org/10.1073/pnas.1320116110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akulin, V.M., Carlier, F., Solnik, S., & Latash, M.L. (2019). Sloppy, but acceptable, control of biological movement: Algorithm-based stabilization of subspaces in abundant spaces. Journal of Human Kinetics, 67(1), 4972. https://doi.org/10.2478/hukin-2018-0086

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Mattos, D., Zatsiorsky, V.M., & Latash, M.L. (2016a). Synergies in the space of control variables within the equilibrium-point hypothesis. Neuroscience, 315, 150161. https://doi.org/10.1016/j.neuroscience.2015.12.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Mattos, D., Zatsiorsky, V.M., & Latash, M.L. (2016b). Unsteady steady-states: Central causes of unintentional force drift. Experimental Brain Research, 234(12), 35973611. https://doi.org/10.1007/s00221-016-4757-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Paclet, F., Zatsiorsky, V.M., & Latash, M.L. (2014). Factors affecting grip force: Anatomy, mechanics, and referent configurations. Experimental Brain Research, 232(4), 12191231. https://doi.org/10.1007/s00221-014-3838-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Zatsiorsky, V.M., & Latash, M.L. (2015). Processes underlying unintentional finger force changes in the absence of visual feedback. Experimental Brain Research, 233(3), 711721. https://doi.org/10.1007/s00221-014-4148-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Zhou, T., Zatsiorsky, V.M., & Latash, M.L. (2015). Moving a hand-held object: Reconstruction of referent coordinate and apparent stiffness trajectories. Neuroscience, 298, 336356. https://doi.org/10.1016/j.neuroscience.2015.04.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anderson, F.C., & Pandy, M.G. (2001). Static and dynamic optimization solutions for gait are practically equivalent. Journal of Biomechanics, 34(2), 153161. https://doi.org/10.1016/S0021-9290(00)00155-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aoki, T., Francis, P.R., & Kinoshita, H. (2003). Differences in the abilities of individual fingers during the performance of fast, repetitive tapping movements. Experimental Brain Research, 152(2), 270280. https://doi.org/10.1007/s00221-003-1552-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arimoto, S., Tahara, K., Yamaguchi, M., Nguyen, P.T.A., & Han, H.Y. (2001). Principles of superposition for controlling pinch motions by means of robot fingers with soft tips. Robotica, 19(1), 2128. https://doi.org/10.1017/S0263574700002939

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bagesteiro, L.B., & Sainburg, R.L. (2002). Handedness: Dominant arm advantages in control of limb dynamics. Journal of Neurophysiology, 88(5), 24082421. https://doi.org/10.1152/jn.00901.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bagesteiro, L.B., & Sainburg, R.L. (2003). Nondominant arm advantages in load compensation during rapid elbow joint movements. Journal of Neurophysiology, 90(3), 15031513. https://doi.org/10.1152/jn.00189.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berkinblit, M.B., Gelfand, I.M., & Feldman, A.G. (1986). A model for the control of multijoint movements. Biofizika, 31, 128138.

  • Bernstein, N.A. (1930). A new method of mirror cyclographie and its application towards the study of labor movements during work on a workbench. Hygiene, Safety and Pathology of Labor, 5, 39, and 6, 3–11 (in Russian).

    • Search Google Scholar
    • Export Citation
  • Bernstein, N.A. (1947). On the construction of movements. Medgiz. English translation in Latash 2020b.

  • Bernstein, N.A. (1996). On dexterity and its development. In M.L. Latash & M.T. Turvey (Eds.), Dexterity and its development (pp. 1244). Erlbaum Publication.

    • Search Google Scholar
    • Export Citation
  • Bottasso, C.L., Prilutsky, B.I., Croce, A., Imberti, E., & Sartirana, S. (2006). A numerical procedure for inferring from experimental data the optimization cost functions using a multibody model of the neuro-musculoskeletal system. Multibody System Dynamics, 16(2), 123154. https://doi.org/10.1007/s11044-006-9019-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Churchland, M.M., Yu, B.M., Ryu, S.I., Santhanam, G., & Shenoy, K.V. (2006). Neural variability in premotor cortex provides a signature of motor preparation. Journal of Neuroscience, 26, 36973712. https://doi.org/10.1007/s11044-006-9019-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cuadra, C., Corey, J., & Latash, M.L. (2021). Distortions of the efferent copy during force perception: A study of force drifts and effects of muscle vibration. Neuroscience, 457, 139154. https://doi.org/10.1016/j.neuroscience.2021.01.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cuadra, C., Wojnicz, W., Kozinc, Z., & Latash, M.L. (2020). Perceptual and motor effects of muscle co-activation in a force production task. Neuroscience, 437, 3444. https://doi.org/10.1016/j.neuroscience.2020.04.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dakin, R., Segre, P.S., & Altshuler, D.L. (2020). Individual variation and the biomechanics of maneuvering flight in hummingbirds. Journal of Experimental Biology, 223(20), Article jeb161828. https://doi.org/10.1242/jeb.161828

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Danion, F., Schöner, G., Latash, M.L., Li, S., Scholz, J.P., & Zatsiorsky, V.M. (2003). A force mode hypothesis for finger interaction during multi-finger force production tasks. Biological Cybernetics, 88(2), 9198. https://doi.org/10.1007/s00422-002-0336-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Danna-Dos-Santos, A., Slomka, K., Zatsiorsky, V.M., & Latash, M.L. (2007). Muscle modes and synergies during voluntary body sway. Experimental Brain Research, 179, 533550.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Freitas, P.B., Freitas, S.M.S.F., Lewis, M.M., Huang, X., & Latash, M.L. (2019). Individual preferences in motor coordination seen across the two hands: Relations to movement stability and optimality. Experimental Brain Research, 237(1), 113. https://doi.org/10.1007/s00221-018-5393-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diedrichsen, J., Shadmehr, R., & Ivry, R.B. (2010). The coordination of movement: Optimal feedback control and beyond. Trends in Cognitive Science, 14(1), 3139. https://doi.org/10.1016/j.tics.2009.11.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domkin, D., Laczko, J., Jaric, S., Johansson, H., & Latash, M.L. (2002). Structure of joint variability in bimanual pointing tasks. Experimental Brain Research, 143(1), 1123. https://doi.org/10.1007/s00221-001-0944-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Erlhagen, W., & Schöner, G. (2002). Dynamic field theory of movement preparation. Psychological Reviews, 109(3), 545572. https://doi.org/10.1037/0033-295X.109.3.545

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falaki, A., Huang, X., Lewis, M.M., & Latash, M.L. (2017a). Dopaminergic modulation of multi-muscle synergies in postural tasks performed by patients with Parkinson’s disease. Journal of Electromyography and Kinesiology, 33, 2026. https://doi.org/10.1016/j.jelekin.2017.01.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Falaki, A., Huang, X., Lewis, M.M., & Latash, M.L. (2017b). Motor equivalence and structure of variance: Multi-muscle postural synergies in Parkinson’s disease. Experimental Brain Research, 235(7), 22432258. https://doi.org/10.1007/s00221-017-4971-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1966). Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biophysics, 11, 565578.

    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1986). Once more on the equilibrium-point hypothesis (λ–model) for motor control. Journal of Motor Behavior, 18(1), 1754. https://doi.org/10.1080/00222895.1986.10735369

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (2015). Referent control of action and perception: Challenging conventional theories in behavioral science. Springer.

  • Flash, T., & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience, 5(7), 16881703. https://doi.org/10.1523/JNEUROSCI.05-07-01688.1985

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Freitas, S.M., Scholz, J.P., & Stehman, A.J. (2007). Effect of motor planning on use of motor abundance. Neuroscience Letters, 417(1), 6671. https://doi.org/10.1016/j.neulet.2007.02.037

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Freitas, S.M.S.F., de Freitas, P.B., Lewis, M.M., Huang, X., & Latash, M.L. (2019). Quantitative analysis of multi-element synergies stabilizing performance: Comparison of three methods with respect to their use in clinical studies. Experimental Brain Research, 237(2), 453465. https://doi.org/10.1007/s00221-018-5436-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Friedman, J., SKM, V., Zatsiorsky, V.M., & Latash, M.L. (2009). The sources of two components of variance: An example of multifinger cyclic force production tasks at different frequencies. Experimental Brain Research, 196(2), 263277. https://doi.org/10.1007/s00221-009-1846-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active inference: A process theory. Neural Computation, 29(1), 149. https://doi.org/10.1162/NECO_a_00912

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Full, R.J., Kubow, T., Schmitt, J., Holmes, P., & Koditschek, D. (2002). Quantifying dynamic stability and maneuverability in legged locomotion. Integrative and Comparative Biology, 42(1), 149157. https://doi.org/10.1093/icb/42.1.149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gelfand, I.M., & Latash, M.L. (1998). On the problem of adequate language in movement science. Motor Control, 2(4), 306313. https://doi.org/10.1123/mcj.2.4.306

  • Gelfand, I.M., & Tsetlin, M.L. (1962). On some methods of control of complex systems. Uspekhi Matematicheskih Nauk, 17, 325 (in Russian), English version in Russian Mathematical Surveys, 17, 95–117.

    • Search Google Scholar
    • Export Citation
  • Gelfand, I.M., & Tsetlin, M.L. (1971). Some methods of controlling complex systems. In I.M. Gelfand, V.S. Gurfinkel, S.V. Fomin, & M.L. Tsetlin (Eds.), Models of the structural-functional organization of certain biological systems (pp. 329345). MIT Press.

    • Search Google Scholar
    • Export Citation
  • Gorniak, S.L., Duarte, M., & Latash, M.L. (2008). Do synergies improve accuracy? A study of speed-accuracy trade-offs during finger force production. Motor Control, 12(2), 151172. https://doi.org/10.1123/mcj.12.2.151

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gorniak, S.L., Zatsiorsky, V.M., & Latash, M.L. (2009). Hierarchical control of static prehension: I. Biomechanics. Experimental Brain Research, 193(4), 615631. https://doi.org/10.1007/s00221-008-1662-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harris, C.M., & Wolpert, D.M. (1998). Signal-dependent noise determines motor planning. Nature, 394(6695), 780784. https://doi.org/10.1038/29528

  • Henneman, E., Somjen, G., & Carpenter, D.O. (1965). Excitability and inhibitibility of motoneurones of different sizes. Journal of Neurophysiology, 28(3), 599620. https://doi.org/10.1152/jn.1965.28.3.599

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hipolito, I., Baltieri, M., Friston, K., & Ramstead, M.J.D. (2021). Embodied skillful performance: Where the action is. Synthese, 199, 44574481.

  • Hirose, J., Cuadra, C., Walter, C., & Latash, M.L. (2020). Finger interdependence and unintentional force drifts: Lessons from manipulations of visual feedback. Human Movement Science, 74, Article 102714. https://doi.org/10.1016/j.humov.2020.102714

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jaric, S., & Latash, M.L. (1999). Learning a pointing task with a kinematically redundant limb: Emerging synergies and patterns of final position variability. Human Movement Science, 18(6), 819838. https://doi.org/10.1016/S0167-9457(99)00042-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jo, H.J., Lucassen, E., Huang, X., & Latash, M.L. (2017). Changes in multi-digit synergies and their feed-forward adjustments in multiple sclerosis. Journal of Motor Behavior, 49(2), 218228. https://doi.org/10.1080/00222895.2016.1169986

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jo, H.J., Maenza, C., Good, D.C., Huang, X., Park, J., Sainburg, R.L., & Latash, M.L. (2016). Effects of unilateral stroke on multi-finger synergies and their feed-forward adjustments. Neuroscience, 319, 194205. https://doi.org/10.1016/j.neuroscience.2016.01.054

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kang, N., Shinohara, M., Zatsiorsky, V.M., & Latash, M.L. (2004). Learning multi-finger synergies: An uncontrolled manifold analysis. Experimental Brain Research, 157(3), 336350. https://doi.org/10.1007/s00221-004-1850-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karst, G.M., & Hasan, Z. (1987). Antagonist muscle activity during human forearm movements under varying kinematic and loading conditions. Experimental Brain Research, 67(2), 391401. https://doi.org/10.1007/BF00248559

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinions in Neurobiology, 9(6), 718727. https://doi.org/10.1016/S0959-4388(99)00028-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.W., Shim, J.K., Zatsiorsky, V.M., & Latash, M.L. (2006). Anticipatory adjustments of multi-finger synergies in preparation for self-triggered perturbations. Experimental Brain Research, 174(4), 604612. https://doi.org/10.1007/s00221-006-0505-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krishnamoorthy, V., Latash, M.L, Scholz, J.P., & Zatsiorsky, V.M. (2003). Muscle synergies during shifts of the center of pressure by standing persons. Experimental Brain Research, 152, 281292. https://doi.org/10.1007/s00221-006-0505-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2008). Synergy. Oxford University Press.

  • Latash, M.L. (2010). Motor synergies and the equilibrium-point hypothesis. Motor Control, 14(3), 294322. https://doi.org/10.1123/mcj.14.3.294

  • Latash, M.L. (2012). The bliss (not the problem) of motor abundance (not redundancy). Human Movement Science, 217, 15.

  • Latash, M.L. (2019). Physics of biological action and perception. Academic Press.

  • Latash, M.L. (Ed.). (2020). Bernstein’s construction of movements. Routledge.

  • Latash, M.L. (2021a). Efference copy in kinesthetic perception: A copy of what is it? Journal of Neurophysiology, 125(4), 10791094. https://doi.org/10.1152/jn.00545.2020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2021b). Laws of nature that define biological action and perception. Physics of Life Reviews, 36, 4767. https://doi.org/10.1016/j.plrev.2020.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Friedman, J., Kim, S.W., Feldman, A.G., & Zatsiorsky, V.M. (2010). Prehension synergies and control with referent hand configurations. Experimental Brain Research, 202(1), 213229. https://doi.org/10.1007/s00221-009-2128-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Huang, X. (2015). Neural control of movement stability: Lessons from studies of neurological patients. Neuroscience, 301, 3948. https://doi.org/10.1016/j.neuroscience.2015.05.075

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Jaric, S. (2002). The organization of drinking: Postural characteristics of the arm-head coordination. Journal of Motor Behavior, 34(2), 139150. https://doi.org/10.1080/00222890209601936

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Li, Z.-M., & Zatsiorsky, V.M. (1998). A principle of error compensation studied within a task of force production by a redundant set of fingers. Experimental Brain Research, 122(2), 131138. https://doi.org/10.1007/s002210050500

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Scholz, J.F., Danion, F., & Schöner, G. (2001). Structure of motor variability in marginally redundant multi-finger force production tasks. Experimental Brain Research, 141(2), 153165. https://doi.org/10.1007/s002210100861

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Scholz, J.F., Danion, F., & Schöner, G. (2002). Finger coordination during discrete and oscillatory force production tasks. Experimental Brain Research, 146, 412432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Scholz, J.P., & Schöner, G. (2007). Toward a new theory of motor synergies. Motor Control, 11(3), 276308. https://doi.org/10.1123/mcj.11.3.276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Shim, J.K., Smilga, A.V., & Zatsiorsky, V. (2005). A central back-coupling hypothesis on the organization of motor synergies: A physical metaphor and a neural model. Biological Cybernetics, 92(3), 186191. https://doi.org/10.1007/s00422-005-0548-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Shim, J.K., & Zatsiorsky, V.M. (2004). Is there a timing synergy during multi-finger production of quick force pulses? Experimental Brain Research, 159, 6571.

    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Yarrow, K., & Rothwell, J.C. (2003). Changes in finger coordination and responses to single pulse TMS of motor cortex during practice of a multi-finger force production task. Experimental Brain Research, 151(1), 6071. https://doi.org/10.1007/s00221-003-1480-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Zatsiorsky, V.M. (1993). Joint stiffness: Myth or reality? Human Movement Science, 12(6), 653692. https://doi.org/10.1016/0167-9457(93)90010-M

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Zatsiorsky, V.M. (2016). Biomechanics and motor control: Defining central concepts. Academic Press.

  • Leone, F.C., Nottingham, R.B., & Nelson, L.S. (1961). The folded normal distribution. Technometrics, 3(4), 543550. https://doi.org/10.1080/00401706.1961.10489974

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z.M., Latash, M.L., & Zatsiorsky, V.M. (1998). Force sharing among fingers as a model of the redundancy problem. Experimental Brain Research, 119(3), 276286. https://doi.org/10.1007/s002210050343

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, G.E. (2012). Optimal isn’t good enough. Biological Cybernetics, 106(11–12), 757765. https://doi.org/10.1007/s00422-012-0514-6

  • Madarshahian, S., & Latash, M.L. (2021). Synergies at the level of motor units in single-finger and multi-finger tasks. Experimental Brain Research, 239(9), 29052923. https://doi.org/10.1007/s00221-021-06180-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Madarshahian, S., & Latash, M.L. (2022). Reciprocal and coactivation commands at the level of individual motor units in an extrinsic finger flexor-extensor muscle pair. Experimental Brain Research, 240(1), 321340. https://doi.org/10.1007/s00221-021-06255-w

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madarshahian, S., Letizi, J., & Latash, M.L. (2021). Synergic control of a single muscle: The example of flexor digitorum superficialis. Journal of Physiology, 599(4), 12611279. https://doi.org/10.1113/JP280555

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin, V., Reimann, H., & Schöner, G. (2019). A process account of the uncontrolled manifold structure of joint space variance in pointing movements. Biological Cybernetics, 113(3), 293307. https://doi.org/10.1007/s00422-019-00794-w

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin, V., Scholz, J.P., & Schöner, G. (2009). Redundancy, self-motion, and motor control. Neural Computation, 21(5), 13711414. https://doi.org/10.1162/neco.2008.01-08-698

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mattos, D., Kuhl, J., Scholz, J.P., & Latash, M.L. (2013). Motor equivalence (ME) during reaching: Is ME observable at the muscle level? Motor Control, 17(2), 145175. https://doi.org/10.1123/mcj.17.2.145

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mattos, D., Latash, M.L., Park, E., Kuhl, J., & Scholz, J.P. (2011). Unpredictable elbow joint perturbation during reaching results in multijoint motor equivalence. Journal of Neurophysiology, 106(3), 14241436. https://doi.org/10.1152/jn.00163.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mattos, D., Schöner, G., Zatsiorsky, V.M., & Latash, M.L. (2015a). Motor equivalence during accurate multi-finger force production. Human Movement Science, 233, 487502.

    • Search Google Scholar
    • Export Citation
  • Mattos, D., Schöner, G., Zatsiorsky, V.M., & Latash, M.L. (2015b). Task-specific stability of abundant systems: Structure of variance and motor equivalence. Neuroscience, 310, 600615. https://doi.org/10.1016/j.neuroscience.2015.09.071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • McNamee, D., & Wolpert, D.M. (2019). Internal models in biological control. Annual Review of Control, Robotics, and Autonomous Systems, 2(1), 339364. https://doi.org/10.1146/annurev-control-060117-105206

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mussa-Ivaldi, F.A., Morasso, P., & Zaccaria, R. (1989). Kinematic networks. A distributed model for representing and regularizing motor redundancy. Biological Cybernetics, 60, 116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olafsdottir, H., Kim, S.W., Zatsiorsky, V.M., & Latash, M.L. (2008). Anticipatory synergy adjustments in preparation to self-triggered perturbations in elderly individuals. Journal of Applied Biomechanics, 24(2), 175179. https://doi.org/10.1123/jab.24.2.175

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Olafsdottir, H., Yoshida, N., Zatsiorsky, V.M., & Latash, M.L. (2005). Anticipatory covariation of finger forces during self-paced and reaction time force production. Neuroscience Letters, 381(1–2), 9296. https://doi.org/10.1016/j.neulet.2005.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park, J., Jo, H.J., Lewis, M.M., Huang, X., & Latash, M.L. (2013). Effects of Parkinson’s disease on optimization and structure of variance in multi-finger tasks. Experimental Brain Research, 231(1), 5163. https://doi.org/10.1007/s00221-013-3665-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park, J., Lewis, M.M., Huang, X., & Latash, M.L. (2013). Effects of olivo-ponto-cerebellar atrophy (OPCA) on finger interaction and coordination. Clinical Neurophysiology, 124(5), 991998. https://doi.org/10.1016/j.clinph.2012.10.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park, J., Wu, Y.-H., Lewis, M.M., Huang, X., & Latash, M.L. (2012). Changes in multi-finger interaction and coordination in Parkinson’s disease. Journal of Neurophysiology, 108(3), 915924. https://doi.org/10.1152/jn.00043.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., Zatsiorsky, V.M., & Latash, M.L. (2010). Optimality vs. variability: An example of multi-finger redundant tasks. Experimental Brain Research, 207(1–2), 119132. https://doi.org/10.1007/s00221-010-2440-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parsa, B., Terekhov, A.V., Zatsiorsky, V.M., & Latash, M.L. (2017). Optimality and stability of intentional and unintentional actions: I. Origins of drifts in performance. Experimental Brain Research, 235(2), 481496. https://doi.org/10.1007/s00221-016-4809-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pilon, J.F., De Serres, S.J., & Feldman, A.G. (2007). Threshold position control of arm movement with anticipatory increase in grip force. Experimental Brain Research, 181(1), 4967. https://doi.org/10.1007/s00221-007-0901-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Poon, C., Chin-Cottongim, L.G., Coombes, S.A., Corcos, D.M., & Vaillancourt, D.E. (2012). Spatiotemporal dynamics of brain activity during the transition from visually guided to memory-guided force control. Journal of Neurophysiology, 108(5), 13351348. https://doi.org/10.1152/jn.00972.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prilutsky, B.I. (2000). Coordination of two- and one-joint muscles: Functional consequences and implications for motor control. Motor Control, 4(1), 144. https://doi.org/10.1123/mcj.4.1.1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prilutsky, B.I., & Zatsiorsky, V.M. (2002). Optimization-based models of muscle coordination. Exercise and Sport Science Reviews, 30(1), 3238. https://doi.org/10.1097/00003677-200201000-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasouli, O., Solnik, S., Furmanek, M.P., Piscitelli, D., Falaki, A., & Latash, M.L. (2017). Unintentional drifts during quiet stance and voluntary body sway. Experimental Brain Research, 235(7), 23012316. https://doi.org/10.1007/s00221-017-4972-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reschechtko, S., & Latash, M.L. (2017). Stability of hand force production: I. Hand level control variables and multi-finger synergies. Journal of Neurophysiology, 118(6), 31523164. https://doi.org/10.1152/jn.00485.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reschechtko, S., & Latash, M.L. (2018). Stability of hand force production: II. Ascending and descending synergies. Journal of Neurophysiology, 120(3), 10451060. https://doi.org/10.1152/jn.00045.2018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ricotta, J., Cuadra, C., Evans, J.S., & Latash, M.L. (2021). Perturbation-induced fast drifts in finger enslaving. Experimental Brain Research, 239(3), 891902. https://doi.org/10.1007/s00221-020-06027-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sainburg, R.L. (2002). Evidence for a dynamic-dominance hypothesis of handedness. Experimental Brain Research, 142(2), 241258. https://doi.org/10.1007/s00221-001-0913-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sainburg, R.L. (2005). Handedness: Differential specializations for control of trajectory and position. Exercise and Sport Science Reviews, 33(4), 206213. https://doi.org/10.1097/00003677-200510000-00010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, S.Y., Haaland, K.Y., & Sainburg, R.L. (2007). Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. Brain, 130(8), 21462158. https://doi.org/10.1093/brain/awm145

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., Danion, F., Latash, M.L., & Schöner, G. (2002). Understanding finger coordination through analysis of the structure of force variability. Biological Cybernetics, 86(1), 2939. https://doi.org/10.1007/s004220100279

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., & Schöner, G. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research, 126(3), 289306. https://doi.org/10.1007/s002210050738

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., Schöner, G., Hsu, W.L., Jeka, J.J., Horak, F., & Martin, V. (2007). Motor equivalent control of the center of mass in response to support surface perturbations. Experimental Brain Research, 180(1), 163179. https://doi.org/10.1007/s00221-006-0848-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., Schöner, G., & Latash, M.L. (2000). Identifying the control structure of multijoint coordination during pistol shooting. Experimental Brain Research, 135(3), 382404. https://doi.org/10.1007/s002210000540

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schöner, G. (1995). Recent developments and problems in human movement science and their conceptual implications. Ecological Psychology, 8, 291314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sefati, S., Nevelin, I.D., Roth, E., Mitchell, T.R.T., Snyder, J.B., Maciver, M.A., Fortune, E.S., & Cowan, N.J. (2013). Mutually opposing forces during locomotion can eliminate the tradeoff between maneuverability and stability. Proceedings of the National Academy of Sciences USA, 110(47), 1879818803. https://doi.org/10.1073/pnas.1309300110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seif-Naraghi, A.H., & Winters, J.M. (1990). Optimized strategies for scaling goal-directed dynamic limb movements. In J.M. Winters & S.L.-Y. Woo (Eds.), Multiple muscle systems. Biomechanics and movement organization (pp. 312334). Springer-Verlag.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selinger, J.C., O’Connor, S.M., Wong, J.D., & Donelan, J.M. (2015). Humans can continuously optimize energetic cost during walking. Current Biology, 25(18), 24522456. https://doi.org/10.1016/j.cub.2015.08.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • SKM, V., Zatsiorsky, V.M., & Latash, M.L. (2010). Variance components in discrete force production tasks. Experimental Brain Research, 205(3), 335349. https://doi.org/10.1007/s00221-010-2367-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slifkin, A.B., Vaillancourt, D.E., & Newell, K.M. (2000). Intermittency in the control of continuous force production. Journal of Neurophysiology, 84(4), 17081718. https://doi.org/10.1152/jn.2000.84.4.1708

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Slota, G.P., Latash, M.L., & Zatsiorsky, V.M. (2012). Tangential finger forces utilize mechanical advantage during static grasping. Journal of Applied Biomechanics, 28(1), 7884. https://doi.org/10.1123/jab.28.1.78

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Terekhov, A.V., Pesin, Y.B., Niu, X., Latash, M.L., & Zatsiorsky, V.M. (2010). An analytical approach to the problem of inverse optimization: An application to human prehension. Journal of Mathematical Biology, 61(3), 423453. https://doi.org/10.1007/s00285-009-0306-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tillman, M., & Ambike, S. (2018). Cue-induced changes in the stability of finger force-production tasks revealed by the uncontrolled manifold analysis. Journal of Neurophysiology, 119(1), 2132. https://doi.org/10.1152/jn.00519.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tillman, M., & Ambike, S. (2020). The influence of recent actions and anticipated actions on the stability of finger forces during a tracking task. Motor Control, 24(3), 365382. https://doi.org/10.1123/mc.2019-0124

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907915. https://doi.org/10.1038/nn1309

  • Vaillancourt, D.E., & Russell, D.M. (2002). Temporal capacity of short-term visuomotor memory in continuous force production. Experimental Brain Research, 145(3), 275285. https://doi.org/10.1007/s00221-002-1081-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vaillancourt, D.E., Slifkin, A.B., & Newell, K.M. (2001). Visual control of isometric force in Parkinson’s disease. Neurophysiologia, 39, 14101418.

    • Search Google Scholar
    • Export Citation
  • Vaillancourt, D.E., Thulborn, K.R., & Corcos, D.M. (2003). Neural basis for the processes that underlie visually guided and internally guided force control in humans. Journal of Neurophysiology, 90(5), 33303340. https://doi.org/10.1152/jn.00394.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Valero-Cuevas, F.J., Smaby, N., Venkadesan, M., Peterson, M., & Wright, T. (2003). The strength-dexterity test as a measure of dynamic pinch performance. Journal of Biomechanics, 36(2), 265270. https://doi.org/10.1016/S0021-9290(02)00340-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whitney, D.E. (1969). Resolved motion rate control of manipulators and human prostheses. IEEE Transactions on Man Machine Systems, 10(2), 4753. https://doi.org/10.1109/TMMS.1969.299896

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y.-H., Pazin, N., Zatsiorsky, V.M., & Latash, M.L. (2012). Practicing elements vs. practicing coordination: Changes in the structure of variance. Journal of Motor Behavior, 44(6), 471478. https://doi.org/10.1080/00222895.2012.740101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y.-H., Pazin, N., Zatsiorsky, V.M., & Latash, M.L. (2013). Improving finger coordination in young and elderly persons. Experimental Brain Research, 226(2), 273283. https://doi.org/10.1007/s00221-013-3433-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yufik, Y.M., & Friston, K. (2016). Life and understanding: Origins of the understanding capacity in self-organizing nervous systems. Frontiers in the System Neuroscience, 10, 98. https://doi.org/10.3389/fnsys.2016.00098

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zatsiorsky, V.M. (1998). Kinematics of human motion. Human Kinetics.

  • Zatsiorsky, V.M., Gregory, R.W., & Latash, M.L. (2002a). Force and torque production in static multi-finger prehension: Biomechanics and Control. Part I. Biomechanics. Biological Cybernetics, 87(1), 5057. https://doi.org/10.1007/s00422-002-0321-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zatsiorsky, V.M., Gregory, R.W., & Latash, M.L. (2002b). Force and torque production in static multi-finger prehension: Biomechanics and Control. Part II. Control. Biological Cybernetics, 87(1), 4049. https://doi.org/10.1007/s00422-002-0320-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zatsiorsky, V.M., Latash, M.L., Gao, F., & Shim, J.K. (2004). The principle of superposition in human prehension. Robotica, 22(2), 231234. https://doi.org/10.1017/S0263574703005344

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zatsiorsky, V.M., Li, Z.M., & Latash, M.L. (2000). Enslaving effects in multi-finger force production. Experimental Brain Research, 131(2), 187195. https://doi.org/10.1007/s002219900261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Sainburg, R.L., Zatsiorsky, V.M., & Latash, M.L. (2006). Hand dominance and multi-finger synergies. Neuroscience Letters, 409(3), 200204. https://doi.org/10.1016/j.neulet.2006.09.048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Scholz, J.P., Zatsiorsky, V.M., & Latash, M.L. (2008). What do synergies do? Effects of secondary constraints on multi-digit synergies in accurate force-production tasks. Journal of Neurophysiology, 99(2), 500513. https://doi.org/10.1152/jn.01029.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., Kanosue, K., & Muraoka, T. (2021). Stability of bimanual finger tapping coordination is constrained by salient phases. Neuroscience Research, 163, 19. https://doi.org/10.1016/j.neures.2020.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou, T., Zhang, L., & Latash, M.L. (2015). Intentional and unintentional multi-joint movements: Their nature and structure of variance. Neuroscience, 289, 181193. https://doi.org/10.1016/j.neuroscience.2014.12.079

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2797 1723 73
Full Text Views 50 36 2
PDF Downloads 95 68 6