Between a Walk and a Hard Place: How Stepping Patterns Change While Navigating Environmental Obstacles

Click name to view affiliation

Ashwini Kulkarni Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA

Search for other papers by Ashwini Kulkarni in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9578-1828
,
Chuyi Cui Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA

Search for other papers by Chuyi Cui in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0437-323X
,
Shirley Rietdyk Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA

Search for other papers by Shirley Rietdyk in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4990-3943
, and
Satyajit Ambike Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA

Search for other papers by Satyajit Ambike in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0521-860X *
Restricted access

Maintaining a consistent relationship between each footfall and the body’s motion is a key mechanism to maintain balance while walking. However, environmental features, for example, puddles/obstacles, impose additional constraints on foot placement. This study investigated how healthy young individuals alter foot placements to simultaneously manage body-centric and environmental constraints during an obstacle-crossing task. Consistent step length promotes balance for all steps, whereas accurate foot placement around the obstacle is essential to avoid a trip. While crossing an obstacle, any error in positioning one foot relative to the obstacle can be compensated by selecting the placement of the subsequent step. However, compensation will necessarily alter step length from its average value. The interstep covariance index computed from two consecutive foot placements was used to quantify this tradeoff between body-centric and environmental constraints for six consecutive steps while approaching, crossing, and resuming unobstructed gait after crossing the obstacle. The index declined only when either one or both feet were adjacent to the obstacle. The decline was driven in part by a tendency toward higher step length variability. Thus, changes in the stepping patterns to address the environmental constraint occurred at the cost of the body-centric constraint. However, the step length never ceased to be controlled; the interstep covariance index was positive for all steps. Overall, participants adapted foot placement control to account for the larger threat to balance. The environmental constraint was prioritized only when a potential trip posed greater threat to balance compared with the threat posed by variable step length.

  • Collapse
  • Expand
  • Almeida, Q.J., & Lebold, C.A. (2010). Freezing of gait in Parkinson’s disease: A perceptual cause for a motor impairment? Journal of Neurology Neurosurgery Psychiatry, 81(5), 513518. https://doi.org/10.1136/jnnp.2008.160580

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Penedo, T., Kulkarni, A., Santinelli, F.B., & Barbieri, F.A. (2021). Step length synergy while crossing obstacles is weaker in patients with Parkinson’s disease. Gait & Posture, 84, 340345. https://doi.org/10.1016/j.gaitpost.2021.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azulay, J.P., Mesure, S., & Blin, O. (2006). Influence of visual cues on gait in Parkinson’s disease: Contribution to attention or sensory dependence? Journal of the Neurological Sciences, 248(1–2), 192195. https://doi.org/10.1016/j.jns.2006.05.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauby, C.E., & Kuo, A.D. (2000). Active control of lateral balance in human walking. Journal of Biomechanics, 33(11), 14331440. https://doi.org/10.1016/s0021-9290(00)00101-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, W.P., Alessio, H.M., Mills, E.M., & Tong, C. (1997). Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing, 26(4), 261268. https://doi.org/10.1093/ageing/26.4.261

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, A.J., Morgan, K., Bendall, M.J., Dallosso, H., Ebrahim, S.B., Arie, T.H., . . . Bassey, E.J. (1988). Falls by elderly people at home: Prevalence and associated factors. Age Ageing, 17(6), 365372. https://doi.org/10.1093/ageing/17.6.365

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosse, I., Oberlander, K.D., Savelberg, H.H., Meijer, K., Bruggemann, G.P., & Karamanidis, K. (2012). Dynamic stability control in younger and older adults during stair descent. Human Movement Science, 31(6), 15601570. https://doi.org/10.1016/j.humov.2012.05.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruijn, S.M., Meijer, O.G., Beek, P.J., & van Dieen, J.H. (2013). Assessing the stability of human locomotion: A review of current measures. Journal of Royal Society, Interface, 10(83), Article 20120999. https://doi.org/10.1098/rsif.2012.0999

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H.C., Ashton-Miller, J.A., Alexander, N.B., & Schultz, A.B. (1991). Stepping over obstacles: Gait patterns of healthy young and old adults. Journals of Gerontology, 46(6), M196203. https://doi.org/10.1093/geronj/46.6.m196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, L.S., & Draganich, L.F. (1998). Placing the trailing foot closer to an obstacle reduces flexion of the hip, knee, and ankle to increase the risk of tripping. Journal of Biomechanics, 31(8), 685691. https://doi.org/10.1016/s0021-9290(98)00081-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, B.C., & Manini, T.M. (2008). Sarcopenia ≠ dynapenia. The Journal of Gerontology Series A Biological Sciences Medical Sciences, 63(8), 829834. https://www.ncbi.nlm.nih.gov/pubmed/18772470

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, S.H., & Kuo, A.D. (2013). Two independent contributions to step variability during over-ground human walking. PLoS One, 8(8), Article e73597. https://doi.org/10.1371/journal.pone.0073597

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cusumano, J.P., & Dingwell, J.B. (2013). Movement variability near goal equivalent manifolds: Fluctuations, control, and model-based analysis. Human Movement Science, 32(5), 899923. https://doi.org/10.1016/j.humov.2013.07.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desailly, E., Daniel, Y., Sardain, P., & Lacouture, P. (2009). Foot contact event detection using kinematic data in cerebral palsy children and normal adults gait. Gait & Posture, 29(1), 7680. https://doi.org/10.1016/j.gaitpost.2008.06.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, G.J., Parade, M.S., Barton, S.L., & Fajen, B.R. (2018). The pickup of visual information about size and location during approach to an obstacle. PLoS One, 13(2), Article e0192044. https://doi.org/10.1371/journal.pone.0192044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, J.M., Shipman, D.W., Kram, R., & Kuo, A.D. (2004). Mechanical and metabolic requirements for active lateral stabilization in human walking. Journal of Biomechanics, 37(6), 827835. https://doi.org/10.1016/j.jbiomech.2003.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elias, L.J., Bryden, M.P., & Bulman-Fleming, M.B. (1998). Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia, 36(1), 3743. https://doi.org/10.1016/s0028-3932(97)00107-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G., Levin, M.F., Garofolini, A., Piscitelli, D., & Zhang, L. (2021). Central pattern generator and human locomotion in the context of referent control of motor actions. Clinical Neurophysiology, 132(11), 28702889. https://doi.org/10.1016/j.clinph.2021.08.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hak, L., Hettinga, F.J., Duffy, K.R., Jackson, J., Sandercock, G.R.H., & Taylor, M.J.D. (2019). The concept of margins of stability can be used to better understand a change in obstacle crossing strategy with an increase in age. Journal of Biomechanics, 84, 147152. https://doi.org/10.1016/j.jbiomech.2018.12.037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heijnen, M.J., Muir, B.C., & Rietdyk, S. (2012). Factors leading to obstacle contact during adaptive locomotion. Experimental Brain Research, 223(2), 219231. https://doi.org/10.1007/s00221-012-3253-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heijnen, M.J., & Rietdyk, S. (2016). Falls in young adults: Perceived causes and environmental factors assessed with a daily online survey. Human Movement Science, 46, 8695. https://doi.org/10.1016/j.humov.2015.12.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hof, A.L. (2008). The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Human Movement Science, 27(1), 112125. https://doi.org/10.1016/j.humov.2007.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollands, M., Hollands, K., & Rietdyk, S. (2017). Visual control of adaptive locomotion and changes due to natural ageing. Springer. https://doi.org/https://doi.org/10.1007/978-3-319-48980-3_5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joshi, V., & Srinivasan, M. (2018). Walking crowds on a shaky surface: Stable walkers discover Millennium Bridge oscillations with and without pedestrian synchrony. Biology Letters, 14(10), Article 20180564. https://doi.org/10.1098/rsbl.2018.0564

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, V., Rosenblatt, N.J., Latash, M.L., & Grabiner, M.D. (2013). The effects of age on stabilization of the mediolateral trajectory of the swing foot. Gait & Posture, 38(4), 923928. https://doi.org/10.1016/j.gaitpost.2013.04.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulkarni, A., Cho, H., Rietdyk, S., & Ambike, S. (2021). Step length synergy is weaker in older adults during obstacle crossing. Journal of Biomechanics, 118, Article 110311. https://doi.org/10.1016/j.jbiomech.2021.110311

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulkarni, A., Cui, C., Rietdyk, S., & Ambike, S. (2022). Step length and the extrapolated center of mass co-vary to stabilize the margin of stability in the anterior-posterior direction during unobstructed and obstructed walking. BioRxiv. https://doi.org/10.1101/2022.03.13.482180

    • Search Google Scholar
    • Export Citation
  • Kuo, A.D., & Donelan, J.M. (2010). Dynamic principles of gait and their clinical implications. Physical Therapy, 90(2), 157174. https://doi.org/10.2522/ptj.20090125

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2021). One more time about motor (and non-motor) synergies. Experimental Brain Research, 239(10), 29512967. https://doi.org/10.1007/s00221-021-06188-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D.N., Lishman, J.R., & Thomson, J.A. (1982). Regulation of gait in long jumping. Journal of Experimental Psychology-Human Perception and Performance, 8(3), 448459. https://doi.org/10.1037/0096-1523.8.3.448

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lowrey, C.R., Watson, A., & Vallis, L.A. (2007). Age-related changes in avoidance strategies when negotiating single and multiple obstacles. Experimental Brain Research, 182(3), 289299. https://doi.org/10.1007/s00221-007-0986-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maki, B.E. (1997). Gait changes in older adults: Predictors of falls or indicators of fear. Journal of the American Geriatrics Society, 45(3), 313320. https://doi.org/10.1111/j.1532-5415.1997.tb00946.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthis, J.S., Barton, S.L., & Fajen, B.R. (2015). The biomechanics of walking shape the use of visual information during locomotion over complex terrain. Journal of Vision, 15(3), 10. https://doi.org/10.1167/15.3.10

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAndrew, P.M., Dingwell, J.B., & Wilken, J.M. (2010). Walking variability during continuous pseudo-random oscillations of the support surface and visual field. Journal of Biomechanics, 43(8), 14701475. https://doi.org/10.1016/j.jbiomech.2010.02.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muir, B.C., Bodratti, L.A., Morris, C.E., Haddad, J.M., van Emmerik, R.E.A., & Rietdyk, S. (2020). Gait characteristics during inadvertent obstacle contacts in young, middle-aged and older adults. Gait & Posture, 77, 100104. https://doi.org/10.1016/j.gaitpost.2020.01.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muir, B.C., Haddad, J.M., van Emmerik, R.E.A., & Rietdyk, S. (2019). Changes in the control of obstacle crossing in middle age become evident as gait task difficulty increases. Gait & Posture, 70, 254259. https://doi.org/10.1016/j.gaitpost.2019.01.035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, S.M., & Kuo, A.D. (2009). Direction-dependent control of balance during walking and standing. Journal of Neurophysiology, 102(3), 14111419. https://doi.org/10.1152/jn.00131.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohtsu, H., Yoshida, S., Minamisawa, T., Takahashi, T., Yomogida, S.I., & Kanzaki, H. (2019). Investigation of balance strategy over gait cycle based on margin of stability. Journal of Biomechanics, 95, Article 109319. https://doi.org/10.1016/j.jbiomech.2019.109319

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patla, A.E. (1997). Understanding the roles of vision in the control of human locomotion. Gait & Posture, 5(1), 5469. https://doi.org/10.1016/S0966-6362(96)01109-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patla, A.E., & Greig, M. (2006). Any way you look at it, successful obstacle negotiation needs visually guided on-line foot placement regulation during the approach phase. Neuroscience Letters, 397(1–2), 110114. https://doi.org/10.1016/j.neulet.2005.12.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reimann, H., Fettrow, T., & Jeka, J.J. (2018). Strategies for the control of balance during locomotion. Kinesiology Review, 7(1), 118. https://doi.org/10.1123/kr.2017-0053

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reimann, H., Fettrow, T., Thompson, E.D., & Jeka, J.J. (2018). Neural control of balance during walking. Frontiers in Physiology, 9, Article 1271. https://doi.org/10.3389/fphys.2018.01271

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R.F., & Day, B.L. (2005). Visual guidance of the human foot during a step. The Journal of Physiology, 569(2), 677684. https://doi.org/10.1113/jphysiol.2005.095869

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenblatt, N.J., & Hurt, C.P. (2019). Recommendation for the minimum number of steps to analyze when performing the uncontrolled manifold analysis on walking data. Journal of Biomechanics, 85, 218223. https://doi.org/10.1016/j.jbiomech.2019.01.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., & Schoner, G. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research, 126(3), 289306. https://www.ncbi.nlm.nih.gov/pubmed/10382616

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidler, R.D., Bernard, J.A., Burutolu, T.B., Fling, B.W., Gordon, M.T., Gwin, J.T., . . . Lipps, D.B. (2010). Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neuroscience and Biobehavioral Reviews, 34(5), 721733. https://doi.org/10.1016/j.neubiorev.2009.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirniotou, A., Panteli, F., & Theodorou, A. (2022). Target constraints influence locomotion pattern to the first hurdle. Motor Control, 26(2), 194212. https://doi.org/10.1123/mc.2021-0042

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Townsend, M.A. (1985). Biped gait stabilization via foot placement. Journal of Biomechanics, 18(1), 2138. https://doi.org/10.1016/0021-9290(85)90042-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verrel, J., Lovden, M., & Lindenberger, U. (2012). Older adults show preserved equilibrium but impaired step length control in motor-equivalent stabilization of gait. PLoS One, 7(12), Article e52024. https://doi.org/10.1371/journal.pone.0052024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voloshina, A.S., Kuo, A.D., Daley, M.A., & Ferris, D.P. (2013). Biomechanics and energetics of walking on uneven terrain. The Journal of Experimental Biology, 216(21), 39633970. https://doi.org/10.1242/jeb.081711

    • Search Google Scholar
    • Export Citation
  • Wang, Y., & Srinivasan, M. (2014). Stepping in the direction of the fall: The next foot placement can be predicted from current upper body state in steady-state walking. Biology Letters, 10(9), Article 20140405. https://doi.org/10.1098/rsbl.2014.0405

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winter, D.A. (1995). Human balance and posture control during standing and walking. Gait & Posture, 3(4), 192214. https://doi.org/10.1016/0966-6362(96)82849-9

    • Search Google Scholar
    • Export Citation
  • Young, W.R., & Hollands, M.A. (2012). Evidence for age-related decline in visuomotor function and reactive stepping adjustments. Gait & Posture, 36(3), 477481. https://doi.org/10.1016/j.gaitpost.2012.04.009

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1508 378 58
Full Text Views 198 133 2
PDF Downloads 100 13 6