Inverse Saxophone—A Device to Study the Role of Individual Finger Perturbations on Grasp Stability

Click name to view affiliation

Thomas Jacob Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India

Search for other papers by Thomas Jacob in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1428-2980
,
Swarnab Dutta Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India

Search for other papers by Swarnab Dutta in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5237-6195
,
Salai Jeyaseelan Annamalai Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India

Search for other papers by Salai Jeyaseelan Annamalai in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5393-4868
, and
Varadhan SKM Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India

Search for other papers by Varadhan SKM in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5746-2340 *
Restricted access

The efficient coordination of fingertip forces to maintain static equilibrium while grasping an object continues to intrigue scientists. While many studies have explored this coordination, most of these studies assumed that interactions of hands primarily occur with rigid inanimate objects. Instead, our daily interactions with living and nonliving entities involve many dynamic, compliant, or fragile bodies. This paper investigates the fingertip force coordination on a manipulandum that changes its shape while grasping it. We designed a five-finger perturbation system with linear actuators at positions corresponding to each finger that would protrude outward from the center of the handle or retract toward the center of the handle as programmed. The behavior of the perturbed fingers and the other fingers while grasping this device was studied. Based on previous experiments on expanding and contracting handles, we hypothesized that each finger would exhibit a comparable response to similar horizontal perturbations. However, the response of the little finger was significantly different from the other fingers. We speculate that the central nervous system demonstrates preferential recruitment of some fingers over others while performing a task.

  • Collapse
  • Expand
  • Abolins, V., Stremoukhov, A., Walter, C., & Latash, M.L. (2020). On the origin of finger enslaving: Control with referent coordinates and effects of visual feedback. Journal of Neurophysiology, 124(6), 16251636. https://doi.org/10.1152/jn.00322.2020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Akazawa, K., Milner, T.E., & Stein, R.B. (1983). Modulation of reflex EMG and stiffness in response to stretch of human finger muscle. Journal of Neurophysiology, 49(1). https://doi.org/10.1152/jn.1983.49.1.16

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Paclet, F., Zatsiorsky, V.M., & Latash, M.L. (2014). Factors affecting grip force: Anatomy, mechanics, and referent configurations. Experimental Brain Research, 232(4), 12191231. https://doi.org/10.1007/s00221-014-3838-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arbib, M.A., Iberall, T., & Lyons, D. (1985). Coordinated control programs for movements of the hand. Experimental Brain Research, 10, 111129. https://doi.org/10.1007/978-3-642-70105-4_7

    • Search Google Scholar
    • Export Citation
  • Bernstein, N.A. (1967). The co-ordination and regulation of movements. Oxford Pergamon.

  • Bernstein, N.A. (2014). On motor control. In M.L. Latash & M.T. Turvey (Eds.), Dexterity and its development. Psychology Press. https://doi.org/10.4324/9781410603357

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, C.S., & McDonagh, M.J.N. (1996). Measurement of muscle and tendon stiffness in man. European Journal of Applied Physiology and Occupational Physiology, 72(4), 380382. https://doi.org/10.1007/BF00599700

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1966). Functional tuning of the nervous system with control of movement or maintenance of a steady posture—II. Controllable parameters of the muscle. Biofizika, 11, 565578.

    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (2011). Space and time in the context of equilibrium‐point theory. Wiley Interdisciplinary Reviews: Cognitive Science, 2(3), 287304. https://doi.org/10.1002/wcs.108

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G., & Levin, M.F. (1995). The origin and use of positional frames of reference in motor control. Behavioral and Brain Sciences, 18(4), 723744. https://doi.org/10.1017/S0140525X0004070X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G., & Levin, M.F. (1996). Grasping cerebellar function depends on our understanding the principles of sensorimotor integration: The frame of reference hypothesis. Behavioral and Brain Sciences, 19(3), 442445. https://doi.org/10.1017/S0140525X00081607

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G., & Orlovsky, G.N. (1972). The influence of different descending systems on the tonic stretch reflex in the cat. Experimental Neurology, 37(3), 481494. https://doi.org/10.1016/0014-4886(72)90091-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Flanagan, J.R., & Wing, A.M. (1993). Modulation of grip force with load force during point-to-point arm movements. Experimental Brain Research, 95(1), 131143. https://doi.org/10.1007/BF00229662

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao, F., Latash, M.L., & Zatsiorsky, V.M. (2005a). Internal forces during object manipulation. Experimental Brain Research, 165(1), 6983. https://doi.org/10.1007/s00221-005-2282-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gao, F., Latash, M.L., & Zatsiorsky, V.M. (2005b). Control of finger force direction in the flexion-extension plane. Experimental Brain Research, 161(3), 307315. https://doi.org/10.1007/s00221-004-2074-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gorniak, S.L., Zatsiorsky, V.M., & Latash, M.L. (2010). Manipulation of a fragile object. Experimental Brain Research, 202(2), 413430. https://doi.org/10.1007/s00221-009-2148-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gorniak, S.L., Zatsiorsky, V.M., & Latash, M.L. (2011). Manipulation of a fragile object by elderly individuals. Experimental Brain Research, 212(4), 505516. https://doi.org/10.1007/s00221-011-2755-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Houk, J.C. (1979). Regulation of stiffness by skeletomotor reflexes. Annual Review of Physiology, 41(1), 99114. https://doi.org/10.1146/annurev.ph.41.030179.000531

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ingram, J.N., Körding, K.P., Howard, I.S., & Wolpert, D.M. (2008). The statistics of natural hand movements. Experimental Brain Research, 188(2), 223236. https://doi.org/10.1007/s00221-008-1355-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jaric, S., Collins, J.J., Marwaha, R., & Russell, E. (2006). Interlimb and within limb force coordination in static bimanual manipulation task. Experimental Brain Research, 168(1–2), 8897. https://doi.org/10.1007/s00221-005-0070-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Johansson, R.S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56(3), 550564. https://doi.org/10.1007/BF00237997

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, I., Cutkosky, M.R., & Johansson, R.S. (1997). Robotic stiffness control and calibration as applied to human grasping tasks. IEEE Transactions on Robotics and Automation, 13(4), 557566. https://doi.org/10.1109/70.611319

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinoshita, H., Kawai, S., & Ikuta, K. (1995). Contributions and co-ordination of individual fingers in multiple finger prehension. Ergonomics, 38(6), 12121230. https://doi.org/10.1080/00140139508925183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laroy, V., Spaans, F., & Reulen, J. (1998). The sensory innervation pattern of the fingers. Journal of Neurology, 245(5), 294298. https://doi.org/10.1007/s004150050221

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2012). The bliss (not the problem) of motor abundance (not redundancy). Experimental Brain Research, 217(1), 15. https://doi.org/10.1007/s00221-012-3000-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Zatsiorsky, V.M. (1993). Joint stiffness: Myth or reality? Human Movement Science, 12(6), 653692. https://doi.org/10.1016/0167-9457(93)90010-M

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z.M., Latash, M., & Zatsiorsky, V. (1998). Force sharing among fingers as a model of the redundancy problem. Experimental Brain Research, 119(3), 276286. https://doi.org/10.1007/s002210050343

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., Pho, R.W.H., Pereira, B.P., Lau, H.-K., & Kumar, V.P. (1997). Distribution of primary motor nerve branches and terminal nerve entry points to the forearm muscles. The Anatomical Record, 248(3), 456463. https://doi.org/10.1002/(SICI)1097-0185(199707)248:3< 456::AID-AR19> 3.0.CO;2-O

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J.R., Budgeon, M.K., Zatsiorsky, V.M., & Latash, M.L. (2011). Stabilization of the total force in multi-finger pressing tasks studied with the “inverse piano” technique. Human Movement Science, 30(3), 446458. https://doi.org/10.1016/j.humov.2010.08.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Naik, A., & Ambike, S. (2022). Expectation of volitional arm movement has prolonged effects on the grip force exerted on a pinched object. Experimental Brain Research, 240(10), 26072621. https://doi.org/10.1007/s00221-022-06438-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oliveira, M.A., Hsu, J., Park, J., Clark, J.E., & Shim, J.K. (2008). Age-related changes in multi-finger interactions in adults during maximum voluntary finger force production tasks. Human Movement Science, 27(5), 714727. https://doi.org/10.1016/j.humov.2008.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parikh, P.J., & Cole, K.J. (2012). Handling objects in old age: Forces and moments acting on the object. Journal of Applied Physiology, 112(7), 10951104. https://doi.org/10.1152/japplphysiol.01385.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rajakumar, B., Dutta, S., & Varadhan, S.K.M. (2022). Support for mechanical advantage hypothesis of grasping cannot be explained only by task mechanics. Scientific Reports, 12(1), 10242. https://doi.org/10.1038/s41598-022-14014-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rajakumar, B., & Varadhan, S.K.M. (2020). Comparable behaviour of ring and little fingers due to an artificial reduction in thumb contribution to hold objects. PeerJ, 8, e9962. https://doi.org/10.7717/peerj.9962

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rearick, M.P., & Santello, M. (2002). Force synergies for multifingered grasping: Effect of predictability in object center of mass and handedness. Experimental Brain Research, 144(1), 3849. https://doi.org/10.1007/s00221-002-1024-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shim, J.K., Latash, M.L., & Zatsiorsky, V.M. (2003). Prehension synergies: Trial-to-trial variability and hierarchical organization of stable performance. Experimental Brain Research, 152(2), 173184. https://doi.org/10.1007/s00221-003-1527-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shim, J.K., Latash, M.L., & Zatsiorsky, V.M. (2004). Finger coordination during moment production on a mechanically fixed object. Experimental Brain Research, 157(4), 457467. https://doi.org/10.1007/s00221-004-1859-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shim, J.K., Latash, M.L., & Zatsiorsky, V.M. (2005a). Prehension synergies in three dimensions. Journal of Neurophysiology, 93(2), 766776. https://doi.org/10.1152/jn.00764.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shim, J.K., Latash, M.L., & Zatsiorsky, V.M. (2005b). Prehension synergies: Trial-to-trial variability and principle of superposition during static prehension in three dimensions. Journal of Neurophysiology, 93(6), 36493658. https://doi.org/10.1152/jn.01262.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • van Doren, C.L. (1998). Grasp stiffness as a function of grasp force and finger span. Motor Control, 2(4), 352378. https://doi.org/10.1123/mcj.2.4.352

  • van Duinen, H., & Gandevia, S.C. (2011). Constraints for control of the human hand. The Journal of Physiology, 589(23), 55835593. https://doi.org/10.1113/jphysiol.2011.217810

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Westling, G., & Johansson, R.S. (1984). Factors influencing the force control during precision grip. Experimental Brain Research, 53(2), 277284. https://doi.org/10.1007/BF00238156

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yu, W.S., van Duinen, H., & Gandevia, S.C. (2010). Limits to the control of the human thumb and fingers in flexion and extension. Journal of Neurophysiology, 103(1), 278289. https://doi.org/10.1152/jn.00797.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zatsiorsky, V.M., Gao, F., & Latash, M.L. (2006). Prehension stability: Experiments with expanding and contracting handle. Journal of Neurophysiology, 95(4), 25132529. https://doi.org/10.1152/jn.00839.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zatsiorsky, V.M., Li, Z.-M., & Latash, M.L. (2000). Enslaving effects in multi-finger force production. Experimental Brain Research, 131(2), 187195. https://doi.org/10.1007/s002219900261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 866 244 35
Full Text Views 193 168 0
PDF Downloads 48 8 0