Startling Acoustic Stimulation Has Task-Specific Effects on Intracortical Facilitation and Inhibition at Rest and During Visually Guided Isometric Elbow Flexion in Healthy Individuals

in Motor Control

Click name to view affiliation

Yen-Ting ChenDepartment of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, and TIRR Memorial Hermann Hospital, Houston, TX, USA
Department of Health and Kinesiology, Northeastern State University, Broken Arrow, OK, USA

Search for other papers by Yen-Ting Chen in
Current site
Google Scholar
PubMed
Close
,
Shengai LiDepartment of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, and TIRR Memorial Hermann Hospital, Houston, TX, USA

Search for other papers by Shengai Li in
Current site
Google Scholar
PubMed
Close
,
Yingchun ZhangDepartment of Biomedical Engineering, University of Houston, Houston, TX, USA

Search for other papers by Yingchun Zhang in
Current site
Google Scholar
PubMed
Close
,
Ping ZhouSchool of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China

Search for other papers by Ping Zhou in
Current site
Google Scholar
PubMed
Close
, and
Sheng LiDepartment of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, and TIRR Memorial Hermann Hospital, Houston, TX, USA

Search for other papers by Sheng Li in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Startling acoustic stimulation (SAS) causes a transient effect on the primary motor cortex (M1) nonreflexively. It reduces the cortical excitability at rest, but not during voluntary contraction. However, the effect of SAS on intracortical activity is not clear. The purpose of this study was to investigate the SAS effect on short-interval intracortical inhibition and intracortical facilitation using transcranial magnetic stimulation (TMS). Eleven healthy individuals performed isometric elbow flexion at 10% of maximum voluntary contraction on the dominant side with a real-time visual target (i.e., M1 preactivation) or at rest. TMS was delivered to the M1 ipsilateral to elbow flexion without or with SAS delivered 90 ms prior to TMS. There were three TMS delivery conditions: (a) single pulse, (b) short-interval intracortical inhibition, and (c) intracortical facilitation. TMS-induced motor-evoked potential (MEP) was compared between predetermined TMS and SAS conditions at rest and during ipsilateral voluntary contraction. We confirmed that SAS decreased the MEP amplitude at rest, but not during M1 preactivation. SAS caused task-specific effects on intracortical excitability. Specifically, SAS increased intracortical facilitation at rest and during voluntary contraction. However, SAS decreased short-interval intracortical inhibition only during M1 preactivation. Collectively, our results suggest that SAS transiently influences the motor cortex excitability, possibly via its activation of higher centers, to achieve a visually guided goal-directed task.

Sheng Li (sheng.li@uth.tmc.edu) is corresponding author.

  • Collapse
  • Expand
  • Bell, S.J., Lauer, A., Lench, D.H., & Hanlon, C.A. (2018). Visual attention affects the amplitude of the transcranial magnetic stimulation-associated motor-evoked potential: A preliminary study with clinical utility. Journal of Psychiatric Practice, 24(4), 220229. https://doi.org/10.1097/PRA.0000000000000321

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown, P., Rothwell, J.C., Thompson, P.D., Britton, T.C., Day, B.L., & Marsden, C.D. (1991). New observations on the normal auditory startle reflex in man. Brain, 114(4), 18911902. https://doi.org/10.1093/brain/114.4.1891

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carlsen, A.N., Chua, R., Dakin, C.J., Sanderson, D.J., Inglis, J.T., & Franks, I.M. (2008). Startle reveals an absence of advance motor programming in a Go/No-go task. Neuroscience Letters, 434(1), 6165. https://doi.org/10.1016/j.neulet.2008.01.029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlsen, A.N., Maslovat, D., & Franks, I.M. (2012). Preparation for voluntary movement in healthy and clinical populations: Evidence from startle. Clinical Neurophysiology, 123(1), 2133. https://doi.org/10.1016/j.clinph.2011.04.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen, Y.T., Li, S., DiTommaso, C., Zhou, P., & Li, S. (2019). Possible contributions of ipsilateral pathways from the contralesional motor cortex to the voluntary contraction of the spastic elbow flexors in stroke survivors: A TMS study. American Journal of Physical Medicine & Rehabilitation, 98(7), 558565. https://doi.org/10.1097/PHM.0000000000001147

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y.T., Li, S., Zhou, P., & Li, S. (2016). Different effects of startling acoustic stimuli (SAS) on TMS-induced responses at rest and during sustained voluntary contraction. Frontiers in Human Neuroscience, 10, Article 396. https://doi.org/10.3389/fnhum.2016.00396

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen, Y.T., Li, S., Zhou, P., & Li, S. (2019a). A startling acoustic stimulation (SAS)-TMS approach to assess the reticulospinal system in healthy and stroke subjects. Journal of the Neurological Sciences, 399, 8288. https://doi.org/10.1016/j.jns.2019.02.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen, Y.T., Li, S., Zhou, P., & Li, S. (2019b). The effects of conditioning startling acoustic stimulation (SAS) on the corticospinal motor system: A SAS-TMS study. Experimental Brain Research, 237(8), 19731980. https://doi.org/10.1007/s00221-019-05569-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davis, M., Gendelman, D.S., Tischler, M.D., & Gendelman, P.M. (1982). A primary acoustic startle circuit: Lesion and stimulation studies. Journal of Neuroscience, 2, 791805. https://doi.org/10.1523/JNEUROSCI.02-06-00791.1982

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fisher, R.J., Sharott, A., Kuhn, A.A., & Brown, P. (2004). Effects of combined cortical and acoustic stimuli on muscle activity. Experimental Brain Research, 157(1), 19. https://doi.org/1010.1007/s00221-003-1809-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Furubayashi, T., Ugawa, Y., Terao, Y., et al. (2000). The human hand motor area is transiently suppressed by an unexpected auditory stimulus. Clinical Neurophysiology, 111(1), 178183. https://doi.org/1010.1016/S1388-2457(99)00200-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Germann, M., & Baker, S.N. (2021). Evidence for subcortical plasticity after paired stimulation from a wearable device. The Journal of Neuroscience, 41(7), 14181428. https://doi.org/10.1523/JNEUROSCI.1554-20.2020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hermens, H.J., Freriks, B., Merletti, R., Hägg, G., Stegeman, D., Blok, J., Rau, G., Disselhorst-Klug, C. (1999). SENIAM 8: European recommendations for surface electromyography. Enschede, The Netherlands: Roessingh Research and Development.

    • Search Google Scholar
    • Export Citation
  • Honeycutt, C.F., Kharouta, M., & Perreault, E.J. (2013). Evidence for reticulospinal contributions to coordinated finger movements in humans. Journal of Neurophysiology, 110(7), 14761483. https://doi.org/10.1152/jn.00866.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Honeycutt, C.F., Tresch, U.A., & Perreault, E.J. (2015). Startling acoustic stimuli can evoke fast hand extension movements in stroke survivors. Clinical Neurophysiology, 126(1), 160164. https://doi.org/10.1016/j.clinph.2014.05.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ilic, T.V., Potter-Nerger, M., Holler, I., Siebner, H.R., Ilic, N.V., Deuschl, G., & Volkmann, J. (2011). Startle stimuli exert opposite effects on human cortical and spinal motor system excitability in leg muscles. Physiological Research, 60(Suppl. 1), S101S106.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koch, M. (1999). The neurobiology of startle. Progress in Neurobiology, 59(2), 107128. https://doi.org/10.1016/S0301-0082(98)00098-7

  • Kuhn, A.A., Sharott, A., Trottenberg, T., Kupsch, A., & Brown, P. (2004). Motor cortex inhibition induced by acoustic stimulation. Experimental Brain Research, 158, 120124. https://doi.org/10.1007/s00221-004-1883-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuhn, M., Wendt, J., Sjouwerman, R., Büchel, C., Hamm, A., & Lonsdorf, T.B. (2020). The neurofunctional basis of affective startle modulation in humans: Evidence from combined facial electromyography and functional magnetic resonance imaging. Biological Psychiatry, 87(6), 548558. https://doi.org/10.1016/j.biopsych.2019.07.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuhn, Y.A., Keller, M., Ruffieux, J., & Taube, W. (2017). Adopting an external focus of attention alters intracortical inhibition within the primary motor cortex. Acta Physiologica, 220(2), 289299. https://doi.org/10.1111/apha.12807

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kumari, V., Antonova, E., Geyer, M.A., Ffytche, D., Williams, S.C.R., & Sharma, T. (2007). A fMRI investigation of startle gating deficits in schizophrenia patients treated with typical or atypical antipsychotics. International Journal of Neuropsychopharmacology, 10(04), 463477. https://doi.org/10.1017/S1461145706007139

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, Y., Lopez, D.E., Meloni, E.G., & Davis, M. (1996). A primary acoustic startle pathway: Obligatory role of cochlear root neurons and the nucleus reticularis pontis caudalis. Journal of Neuroscience, 16(11), 37753789. https://doi.org/10.1523/JNEUROSCI.16-11-03775.1996

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li, S., Bhadane, M., Gao, F., & Zhou, P. (2017). The reticulospinal pathway does not increase its contribution to the strength of contralesional muscles in stroke survivors as compared to ipsilesional side or healthy controls. Frontiers in Neurology, 8, Article 627. https://doi.org/10.3389/fneur.2017.00627

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, I., van Wegen, E., de Goede, C., et al. (2005). Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: A systematic review. Clinical Rehabilitation, 19(7), 695713. https://doi.org/10.1191/0269215505cr906oa

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marinovic, W., & Tresilian, J.R. (2016). Triggering prepared actions by sudden sounds: Reassessing the evidence for a single mechanism. Acta Physiologica, 217(1), 1332. https://doi.org/10.1111/apha.12627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marinovic, W., Tresilian, J.R., de Rugy, A., Sidhu, S., & Riek, S. (2014). Corticospinal modulation induced by sounds depends on action preparedness. Journal of Physiology, 592(1), 153169. https://doi.org/10.1113/jphysiol.2013.254581

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mueller-Pfeiffer, C., Zeffiro, T., O'Gorman, R., et al. (2014). Cortical and cerebellar modulation of autonomic responses to loud sounds. Psychophysiology, 51(1), 6069. https://doi.org/10.1111/psyp.12142

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perez, M.A., & Cohen, L.G. (2008). Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand. Journal of Neuroscience, 28(22), 56315640. https://doi.org/10.1523/JNEUROSCI.0093-08.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shibuya, K., Kuboyama, N., & Tanaka, J. (2014). Changes in ipsilateral motor cortex activity during a unilateral isometric finger task are dependent on the muscle contraction force. Physiological Measurement, 35(3), 417428. https://doi.org/10.1088/0967-3334/35/3/417

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stinear, C.M., Walker, K.S., & Byblow, W.D. (2001). Symmetric facilitation between motor cortices during contraction of ipsilateral hand muscles. Experimental Brain Research, 139(1), 101105. https://doi.org/10.1007/s002210100758

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Uematsu, A., Obata, H., Endoh, T., Kitamura, T., Hortobagyi, T., Nakazawa, K., Suzuki, S. (2010). Asymmetrical modulation of corticospinal excitability in the contracting and resting contralateral wrist flexors during unilateral shortening, lengthening and isometric contractions. Experimental Brain Research, 206(1), 5969. https://doi.org/10.1007/s00221-010-2397-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Valls-Solé, J., Rothwell, J.C., Goulart, F., Cossu, G., & Muñoz, E. (1999). Patterned ballistic movements triggered by a startle in healthy humans. Journal of Physiology, 516, 931938.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Valls-Solé, J., Solé, A., Valldeoriola, F., Muñoz, E., Gonzalez, L.E., & Tolosa, E.S. (1995). Reaction time and acoustic startle in normal human subjects. Neuroscience Letters, 195(2), 97100. https://doi.org/10.1016/0304-3940(94)11790-P

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whitall, J., Waller, S.M., Silver, K.H.C., & Macko, R.F. (2000). Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke, 31(10), 23902395. https://doi.org/10.1161/01.STR.31.10.2390

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yeomans, J.S., & Frankland, P.W. (1995). The acoustic startle reflex: Neurons and connections. Brain Research Reviews, 21(3), 301314. https://doi.org/10.1016/0165-0173(96)00004-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 587 587 66
Full Text Views 17 17 4
PDF Downloads 28 28 6