Optimization Reduces Knee-Joint Forces During Walking and Squatting: Validating the Inverse Dynamics Approach for Full Body Movements on Instrumented Knee Prostheses

in Motor Control

Click name to view affiliation

Heiko Wagner Movement Science, University of Münster, Münster, Germany
Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
Center for Interdisciplinary Prevention of Diseases related to Professional Activities, Friedrich-Schiller-Universität, Jena, Germany

Search for other papers by Heiko Wagner in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5470-5044
,
Kim Joris Boström Movement Science, University of Münster, Münster, Germany

Search for other papers by Kim Joris Boström in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5966-458X
,
Marc H.E. de Lussanet Movement Science, University of Münster, Münster, Germany
Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany

Search for other papers by Marc H.E. de Lussanet in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3754-6675 *
,
Myriam L. de Graaf Movement Science, University of Münster, Münster, Germany
Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany

Search for other papers by Myriam L. de Graaf in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9216-1121
,
Christian Puta Center for Interdisciplinary Prevention of Diseases related to Professional Activities, Friedrich-Schiller-Universität, Jena, Germany
Department of Sports Medicine and Health Promotion, Friedrich-Schiller-Universität, Jena, Germany

Search for other papers by Christian Puta in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3936-4605
, and
Luis Mochizuki School of Arts, Sciences, and Humanities, University of Sao Paulo, São Paulo, SP, Brazil

Search for other papers by Luis Mochizuki in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7550-2537
Restricted access

Because of the redundancy of our motor system, movements can be performed in many ways. While multiple motor control strategies can all lead to the desired behavior, they result in different joint and muscle forces. This creates opportunities to explore this redundancy, for example, for pain avoidance or reducing the risk of further injury. To assess the effect of different motor control optimization strategies, a direct measurement of muscle and joint forces is desirable, but problematic for medical and ethical reasons. Computational modeling might provide a solution by calculating approximations of these forces. In this study, we used a full-body computational musculoskeletal model to (a) predict forces measured in knee prostheses during walking and squatting and (b) study the effect of different motor control strategies (i.e., minimizing joint force vs. muscle activation) on the joint load and prediction error. We found that musculoskeletal models can accurately predict knee joint forces with a root mean squared error of <0.5 body weight (BW) in the superior direction and about 0.1 BW in the medial and anterior directions. Generally, minimization of joint forces produced the best predictions. Furthermore, minimizing muscle activation resulted in maximum knee forces of about 4 BW for walking and 2.5 BW for squatting. Minimizing joint forces resulted in maximum knee forces of 2.25 BW and 2.12 BW, that is, a reduction of 44% and 15%, respectively. Thus, changing the muscular coordination strategy can strongly affect knee joint forces. Patients with a knee prosthesis may adapt their neuromuscular activation to reduce joint forces during locomotion.

  • Collapse
  • Expand
  • Bobbert, M.F., & van Ingen Schenau, G.J. (1988). Coordination in vertical jumping. Journal of Biomechanics, 21(3), 249262. https://doi.org/10.1016/0021-9290(88)90175-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brown, I.E. , & Loeb, G.E. (2000). A reductionist approach to creating and using neuromusculoskeletal models. In J. Winters & P. Crago (Eds.), Biomechanics and neural control of posture and movement (pp. 148163). Springer.

    • Search Google Scholar
    • Export Citation
  • Curreli, C., Di Puccio, F., Davico, G., Modenese, L., & Viceconti, M. (2021). Using musculoskeletal models to estimate in vivo total knee replacement kinematics and loads: Effect of differences between models. Frontiers in Bioengineering and Biotechnology, 9, Article 703508. https://doi.org/10.3389/fbioe.2021.703508

    • PubMed
    • Search Google Scholar
    • Export Citation
  • de Lussanet, M.H.E., Smeets, J.B.J., & Brenner, E. (2002). Relative damping improves linear mass-spring models of goal-directed movements. Human Movement Science, 21(1), 85100. https://doi.org/10.1016/S0167-9457(02)00075-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dembia, C.L., Bianco, N.A., Falisse, A., Hicks, J.L., & Delp, S.L. (2021). OpenSim Moco: Musculoskeletal optimal control. PLOS Computational Biology, 16(12), 121. https://doi.org/10.1371/journal.pcbi.1008493

    • Search Google Scholar
    • Export Citation
  • Fregly, B.J., Besier, T.F., Lloyd, D.G., Delp, S.L., Banks, S.A., Pandy, M.G., & D’Lima, D.D. (2012). Grand challenge competition to predict in vivo knee loads. Journal of Orthopaedic Research, 30(4), 503513. https://doi.org/10.1002/jor.22023

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Giddings, V.L., Beaupré, G.S., Whalen, R.T., & Carter, D.R. (2000). Calcaneal loading during walking and running. Medicine & Science in Sports & Exercise, 32(3), 627634. https://doi.org/10.1097/00005768-200003000-00012

    • Search Google Scholar
    • Export Citation
  • Giesl, P., Meisel, D., Scheurle, J., & Wagner, H. (2004). Stability analysis of the elbow with a load. Journal of Theoretical Biology, 228(1), 115125. https://doi.org/10.1016/j.jtbi.2003.12.006

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gunther, M., & Ruder, H. (2003). Synthesis of two-dimensional human walking: A test of the lambda-model. Biol Cybern, 89(2), 89106. https://doi.org/10.1007/s00422-003-0414-x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hatze, H. (1980). A mathematical model for the computational determination of parameter values of anthropomorphic segments. Journal of Biomechanics, 13(10), 833843. https://doi.org/10.1016/0021-9290(80)90171-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hatze, H. (1981). Estimation of myodynamic parameter values from observations on isometrically contracting muscle groups. European Journal of Applied Physiology and Occupational Physiology, 46(4), 325338. https://doi.org/10.1007/BF00422120

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Heinlein, B., Graichen, F., Bender, A., Rohlmann, A., & Bergmann, G. (2007). Design, calibration and pre-clinical testing of an instrumented tibial tray. Journal of Biomechanics, 40, S4S10. https://doi.org/10.1016/j.jbiomech.2007.02.014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kia, M., Stylianou, A.P., & Guess, T.M. (2014). Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials. Medical Engineering & Physics, 36(3), 335344. https://doi.org/10.1016/j.medengphy.2013.12.007

    • Search Google Scholar
    • Export Citation
  • Kinney, A.L., Besier, T.F., D’Lima, D.D., & Fregly, B.J. (2013). Update on grand challenge competition to predict in vivo knee loads. Journal of Biomechanical Engineering, 135(2), 021012. https://doi.org/10.1115/1.4023255

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Knarr, B.A., & Higginson, J.S. (2015). Practical approach to subject-specific estimation of knee joint contact force. Journal of Biomechanics, 48(11), 28972902. https://doi.org/10.1016/j.jbiomech.2015.04.020

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M., Levin, M., Scholz, J., & Schöner, G. (2010). Motor control theories and their applications. Medicina, 46(6), 382392. https://doi.org/10.3390/medicina46060054

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liebetrau, A., Puta, C., Anders, C., de Lussanet, M.H.E., & Wagner, H. (2013). Influence of delayed muscle reflexes on spinal stability: Model-based predictions allow alternative interpretations of experimental data. Human Movement Science, 32(5), 954970. https://doi.org/10.1016/j.humov.2013.03.006

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marra, M., Vanheule, V., Fluit, R., Koopman, B.H., Rasmussen, J., Verdonschot, N., & Anderson, M.S. (2015). A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty. Journal of Biomechanical Engineering, 137(2), 20904. https://doi.org/10.1115/1.4029258

    • Search Google Scholar
    • Export Citation
  • Nejad, Z.I., Khalili, K., Nasab, S.H.H., Schütz, P., Damm, P., Trepczynski, A., Taylor, W.R., & Smith, C.R. (2020). The capacity of generic musculoskeletal simulations to predict knee joint loading using the cams-knee datasets. Annals of Biomedical Engineering, 48(4), 14301440. https://doi.org/10.1007/s10439-020-02465-5

    • Search Google Scholar
    • Export Citation
  • Otten, E. (1987). A myocybernetic model of the jaw system of the rat. Journal of Neuroscience Methods, 21(2–4), 287302. https://doi.org/10.1016/0165-0270(87)90123-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pandy, M.G., & Berme, N. (1988). A numerical method for simulating the dynamics of human walking. Journal of Biomechanics, 21(12), 10431051. https://doi.org/10.1016/0021-9290(88)90250-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rajagopal, A., Dembia, C.L., DeMers, M.S., Delp, D.D., Hicks, J.L., & Delp, S.L. (2016). Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Transactions on Biomedical Engineering, 63(10), 20682079. https://doi.org/10.1109/TBME.2016.2586891

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schellenberg, F., Taylor, W.R., Trepczynski, A., List, R., Kutzner, I., Schütz, P., Lorenzetti, S. (2018). Evaluation of the accuracy of musculoskeletal simulation during squats by means of instrumented knee prostheses. Medical Engineering & Physics, 61, 9599. https://doi.org/10.1016/j.medengphy.2018.09.004

    • Search Google Scholar
    • Export Citation
  • Sherrington, C.S. (1913). Reflex inhibition as a factor in the co-ordination of movement and postures. Quarterly Journal of Experimental Physiology, 6(3), 251310. https://doi.org/10.1113/expphysiol.1913.sp000142

    • Search Google Scholar
    • Export Citation
  • Shippen, J., & May, B. (2012). A kinematic approach to calculating ground reaction forces in dance. Journal of Dance Medicine & Science, 16(1), 3943.

    • Search Google Scholar
    • Export Citation
  • Skou, S.T., Roos, E.M., Laursen, M.B., Rathleff, M.S., Arendt-Nielsen, L., Simonsen, O., & Rasmussen, S. (2015). A randomized, controlled trial of total knee replacement. New England Journal of Medicine, 373(17), 15971606. https://doi.org/10.1056/NEJMoa1505467

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sust, M., Schmalz, T., Beyer, L., Rost, R., Hansen, E., & Weiss, T. (1997). Assessment of isometric contractions performed with maximal subjective effort: Corresponding results for EEG changes and force measurements. International Journal of Neuroscience, 92(1–2), 103118.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor, W.R., Schütz, P., Bergmann, G., List, R., Postolka, B., Hitz, M., Dymke, J., Damm, P., Duda, G., Gerber, H., Schwachmeyer, V., Nasab, S.H.H., Trepczynski, A., & Kutzner, I. (2017). A comprehensive assessment of the musculoskeletal system: The CAMS-Knee data set. Journal of Biomechanics, 65, 3239. https://doi.org/10.1016/j.jbiomech.2017.09.022

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thaller, S., & Wagner, H. (2004). The relation between Hill’s equation and individual muscle properties. Journal of Theoretical Biology, 231(3), 319332. https://doi.org/10.1016/j.jtbi.2004.06.027

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trepczynski, A., Kutzner, I., Schütz, P., Dymke, J., List, R., von Roth, P., Moewis, P., Bergmann, G., Taylor, W.R., & Duda, G.N. (2019). Tibio-femoral contact force distribution is not the only factor governing pivot location after total knee arthroplasty. Scientific Reports, 9(1), 182. https://doi.org/10.1038/s41598-018-37189-z

    • Search Google Scholar
    • Export Citation
  • Trepczynski, A., Kutzner, I., Schwachmeyer, V., Heller, M.O., Pfitzner, T., & Duda, G.N. (2018). Impact of antagonistic muscle co-contraction on in vivo knee contact forces. Journal of NeuroEngineering and Rehabilitation, 15(1), 101. https://doi.org/10.1186/s12984-018-0434-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • van Soest, A.J., & Bobbert, M.F. (1993). The contribution of muscle properties in the control of explosive movements. Biological Cybernetics, 69(3), 195204. https://doi.org/10.1007/BF00198959

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wagner, H., & Blickhan, R. (1999). Stabilizing function of skeletal muscles: An analytical investigation. Journal of Theoretical Biology, 199(2), 163179. https://doi.org/10.1006/jtbi.1999.0949

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wagner, H., & Blickhan, R. (2002). Stabilizing function of antagonistic neuromusculoskeletal systems: An analytical investigation. Biological Cybernetics, 89(1), 7179. https://doi.org/10.1007/s00422-003-0403-0

    • Search Google Scholar
    • Export Citation
  • Walter, J.R, Günther, M., Haeufle, D.F.B., & Schmitt, S. (2021). A geometry- and muscle-based control architecture for synthesising biological movement. Biological Cybernetics, 115(1), 737. https://doi.org/10.1007/s00422-020-00856-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Winter, D.A. (2009). Biomechanics and motor control of human movement. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470549148

  • Zhenxiana, C., Zhifeng, Z., Linga, W., Dichen, L., Yuanzhi, Z., & Zhongmina, J. (2016). Evaluation of a subject-specific musculoskeletal modelling framework for load prediction in total knee arthroplasty. Medical Engineering & Physics, 38(8), 708716. https://doi.org/10.1016/j.medengphy.2016.04.010

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1262 1101 175
Full Text Views 40 39 0
PDF Downloads 53 51 0