Distraction From Smartphones Changed Pedestrians’ Walking Behaviors in Open Areas

in Motor Control

Click name to view affiliation

Yue Luo Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA

Search for other papers by Yue Luo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0062-3190
,
Nicolas Grimaldi Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA

Search for other papers by Nicolas Grimaldi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4613-5192
,
Haolan Zheng Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA

Search for other papers by Haolan Zheng in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3337-3503
,
Wayne C.W. Giang Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA

Search for other papers by Wayne C.W. Giang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4022-7130
, and
Boyi Hu Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA

Search for other papers by Boyi Hu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7442-184X *
Restricted access

The prevalence of phone use has become a major concern for pedestrian safety. Using smartphones while walking reduces pedestrians’ ability to perceive the environment by increasing their cognitive, manual, and visual demands. The purpose of this study was to investigate the effect of common phone tasks (i.e., reading, tapping, gaming) on walking behaviors during outdoor walking. Nineteen young adults were instructed to complete four walking conditions (walking only, walking–reading, walking–tapping, and walking–gaming) along an open corridor. Results showed that all three phone tasks increased participants’ neck flexion (i.e., neck kyphosis) during walking. Meanwhile, the reading task showed a greater influence on the temporal aspect during the early phases of a gait cycle. The tapping task lowered the flexion angles of the middle and lower back (i.e., torso lordosis) and induced a longer terminal double support. And the gaming task resulted in a decrease in middle back flexion, a shorter stride length, and a longer terminal double support while walking. Findings from the study confirmed our hypothesis that phone tasks changed pedestrians’ physical responses to smartphone distraction while walking. To avoid potential risks caused by the observed posture and gait adaptations, safety precautions (e.g., roadside/electronic warning signals) might be imposed depending on the workload expected by different phone tasks.

  • Collapse
  • Expand
  • Agostini, V., Fermo, F.L., Massazza, G., & Knaflitz, M. (2015). Does texting while walking really affect gait in young adults? Journal of NeuroEngineering and Rehabilitation, 12, 86. https://doi.org/10.1186/s12984-015-0079-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Anagnostou, E., Dimopoulou, P., Sklavos, S., Zouvelou, V., & Zambelis, T. (2021). Identifying jitter outliers in single fiber electromyography: Comparison of four methods. Muscle & Nerve, 63(2), 217224. https://doi.org/10.1002/mus.27093

    • Search Google Scholar
    • Export Citation
  • Ankerl, M. (2011). Single N-Back (1.0) [Mobile application software]. https://play.google.com/store/apps/details?id=com.ankerl.singlenback

    • Search Google Scholar
    • Export Citation
  • Basch, C.H., Ethan, D., Rajan, S., & Basch, C.E. (2014). Technology-related distracted walking behaviours in Manhattan’s most dangerous intersections. Injury Prevention: Journal of the International Society for Child and Adolescent Injury Prevention, 20(5), 343346. https://doi.org/10.1136/injuryprev-2013-041063

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Betsch, M., Kalbhen, K., Michalik, R., Schenker, H., Gatz, M., Quack, V., Siebers, H., Wild, M., & Migliorini, F. (2021). The influence of smartphone use on spinal posture—A laboratory study. Gait & Posture, 85, 298303. https://doi.org/10.1016/j.gaitpost.2021.02.018

    • Search Google Scholar
    • Export Citation
  • Bovonsunthonchai, S., Ariyaudomkit, R., Susilo, T.E., Sangiamwong, P., Puchaphan, P., Chandee, S., & Richards, J. (2020). The impact of different mobile phone tasks on gait behaviour in healthy young adults. Journal of Transport & Health, 19, Article 100920. https://doi.org/10.1016/j.jth.2020.100920

    • Search Google Scholar
    • Export Citation
  • Choi, S., Kim, M., Kim, E., & Shin, G. (2021). Changes in low back muscle activity and spine kinematics in response to smartphone use during walking. Spine, 46(7), E426E432. https://doi.org/10.1097/BRS.0000000000003808

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Deng, T., Kanthawala, S., Meng, J., Peng, W., Kononova, A., Hao, Q., Zhang, Q., & David, P. (2019). Measuring smartphone usage and task switching with log tracking and self-reports. Mobile Media & Communication, 7(1), 323. https://doi.org/10.1177/2050157918761491

    • Search Google Scholar
    • Export Citation
  • Digital Press Publishing s.r.o. (2019). Free Books [Mobile application software]. https://play.google.com/store/apps/details?id=com.spreadsong.freebooks

    • Search Google Scholar
    • Export Citation
  • Fukuchi, C.A., Fukuchi, R.K., & Duarte, M. (2019). Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Systematic Reviews, 8(1), 153. https://doi.org/10.1186/s13643-019-1063-z

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gillette, G., Fitzpatrick, K., Chrysler, S., & Avelar, R. (2016). Effect of distractions on a pedestrian’s waiting behavior at traffic signals: Observational study. Transportation Research Record, 2586(1), 111119. https://doi.org/10.3141/2586-13

    • Search Google Scholar
    • Export Citation
  • Ha, S.-Y., Jung, Y.-J., & Shin, D. (2020). The effect of smartphone uses on gait and obstacle collision during walking. Medical Hypotheses, 141, Article 109730. https://doi.org/10.1016/j.mehy.2020.109730

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Han, H., Gwon, S., Kim, M., & Shin, G. (2018). Head tilt angle when using smartphone while walking. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 62, 956959. https://doi.org/10.1177/1541931218621220

    • Search Google Scholar
    • Export Citation
  • Han, H., & Shin, G. (2019). Head flexion angle when web-browsing and texting using a smartphone while walking. Applied Ergonomics, 81(June), Article 102884. https://doi.org/10.1016/j.apergo.2019.102884

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hill, C.N., Reed, W., Schmitt, D., Sands, L.P., & Queen, R.M. (2020). Racial differences in gait mechanics. Journal of Biomechanics, 112, Article 110070. https://doi.org/10.1016/j.jbiomech.2020.110070

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jolles, B.M., Grzesiak, A., Eudier, A., Dejnabadi, H., Voracek, C., Pichonnaz, C., Aminian, K., & Martin, E. (2012). A randomised controlled clinical trial and gait analysis of fixed- and mobile-bearing total knee replacements with a five-year follow-up. The Journal of Bone and Joint Surgery, 94-B(5), 648655. https://doi.org/10.1302/0301-620X.94B5.27598

    • Search Google Scholar
    • Export Citation
  • Kao, P.C., Higginson, C.I., Seymour, K., Kamerdze, M., & Higginson, J.S. (2015). Walking stability during cell phone use in healthy adults. Gait & Posture, 41(4), 947953. https://doi.org/10.1016/j.gaitpost.2015.03.347

    • Search Google Scholar
    • Export Citation
  • Kim, S.-H., Jung, J.-H., Shin, H., Hahm, S.-C., & Cho, H. (2020). The impact of smartphone use on gait in young adults: Cognitive load vs posture of texting. PLoS One, 15, Article e0240118. https://doi.org/10.1371/journal.pone.0240118

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kong, X., Xiong, S., Zhu, Z., Zheng, S., & Long, G. (2015). Development of a conceptual framework for improving safety for pedestrians using smartphones while walking. Challenges and Research Needs, Procedia Manufacturing, 3, 36363643. https://doi.org/10.1016/j.promfg.2015.07.749

    • Search Google Scholar
    • Export Citation
  • Krasovsky, T., Lanir, J., Felberbaum, Y., & Kizony, R. (2021). Mobile phone use during gait: the role of perceived prioritization and executive control. International Journal of Environmental Research and Public Health, 18(16), Article 8637. https://doi.org/10.3390/ijerph18168637

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kristianto, D. (2021). Winning the attention war: Consumers in nine major markets now spend more than four hours a day in apps. https://www.appannie.com/en/insights/market-data/q1-2021-market-index

    • Search Google Scholar
    • Export Citation
  • Laird, N.M., & Ware, J.H. (1982). Random-effects models for longitudinal data. Biometrics, 38(4), 963974. https://doi.org/10.2307/2529876

  • Lennon, A., Oviedo-Trespalacios, O., & Matthews, S. (2017). Pedestrian self-reported use of smart phones: Positive attitudes and high exposure influence intentions to cross the road while distracted. Accident Analysis & Prevention, 98, 338347. https://doi.org/10.1016/j.aap.2016.10.028

    • Search Google Scholar
    • Export Citation
  • Lim, J., Amado, A., Sheehan, L., & Emmerik, R.E.A.V. (2015). Dual task interference during walking: The effects of texting on situational awareness and gait stability. Gait & Posture, 42, 466471. https://doi.org/10.1016/j.gaitpost.2015.07.060

    • Search Google Scholar
    • Export Citation
  • Lin, M.-I.B., & Huang, Y.-P. (2017). The impact of walking while using a smartphone on pedestrians’ awareness of roadside events. Accident Analysis & Prevention, 101, 8796. https://doi.org/10.1016/j.aap.2017.02.005

    • Search Google Scholar
    • Export Citation
  • Lu, X., Luo, Y., Hu, B., Park, N.-K., & Ahrentzen, S. (2021). Testing of path-based visual cues on patterned carpet to assist older adults’ gait in a continuing care retirement community. Experimental Gerontology, 149, Article 111307. https://doi.org/10.1016/j.exger.2021.111307

    • Search Google Scholar
    • Export Citation
  • Luo, Y., Zheng, H., Chen, Y., Giang, W.C.W., & Hu, B. (2020). Influences of smartphone operation on gait and posture during outdoor walking task. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 64, 17231727. https://doi.org/10.1177/1071181320641418

    • Search Google Scholar
    • Export Citation
  • Magnani, R.M., Lehnen, G.C., Rodrigues, F.B., de Sá e Souza, G.S., de Oliveira Andrade, A., & Vieira, M.F. (2017). Local dynamic stability and gait variability during atten-tional tasks in young adults. Gait & Posture, 55, 105108. https://doi.org/10.1016/j.gaitpost.2017.04.019

    • Search Google Scholar
    • Export Citation
  • Mariani, B., Rouhani, H., Crevoisier, X., & Aminian, K. (2013). Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors. Gait & Posture, 37(2), 229234. https://doi.org/10.1016/j.gaitpost.2012.07.012

    • Search Google Scholar
    • Export Citation
  • Nasar, J.L., & Troyer, D. (2013). Pedestrian injuries due to mobile phone use in public places. Accident Analysis & Prevention, 57, 9195. https://doi.org/10.1016/j.aap.2013.03.021

    • Search Google Scholar
    • Export Citation
  • Nasar, L., Hecht, P., & Wener, R. (2008). Mobile telephones, distracted attention, and pedestrian safety. Accident Analysis & Prevention, 40, 6975. https://doi.org/10.1016/j.aap.2007.04.005

    • Search Google Scholar
    • Export Citation
  • Nigg, B.M., Fisher, V., & Ronsky, J.L. (1994). Gait characteristics as a function of age and gender. Gait & Posture, 2, 213220. https://doi.org/10.1016/0966-6362(94)90106-6

    • Search Google Scholar
    • Export Citation
  • Ning, X., Huang, Y., Hu, B., & Nimbarte, A.D. (2015). Neck kinematics and muscle activity during mobile device operations. International Journal of Industrial Ergonomics, 48, 1015. https://doi.org/10.1016/j.ergon.2015.03.003

    • Search Google Scholar
    • Export Citation
  • Nymark, J.R., Balmer, S.J., Melis, E.H., Lemaire, E.D., & Millar, S. (2005). Electromyographic and kinematic nondisabled gait differences at extremely slow overground and treadmill walking speeds. The Journal of Rehabilitation Research and Development, 42(4), 523. https://doi.org/10.1682/JRRD.2004.05.0059

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parr, N.D., Hass, C.J., & Tillman, M.D. (2014). Cellular phone texting impairs gait in able-bodied young adults. Journal of Applied Biomechanics, 30, 685688. https://doi.org/10.1123/jab.2014-0017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Plummer, P., Apple, S., Dowd, C., & Keith, E. (2015). Texting and walking: Effect of environmental setting and task prioritization on dual-task interference in healthy young adults. Gait & Posture, 41, 4651. https://doi.org/10.1016/j.gaitpost.2014.08.007

    • Search Google Scholar
    • Export Citation
  • QC-Reading Team. (2019). ReaderPro (1.9.12.1) [Mobile application software]. https://play.google.com/store/apps/details?id=com.Store.Read

    • Search Google Scholar
    • Export Citation
  • Robert-Lachaine, X., Mecheri, H., Larue, C., & Plamondon, A. (2017). Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Medical & Biological Engineering & Computing, 55, 609619. https://doi.org/10.1007/s11517-016-1537-2

    • Search Google Scholar
    • Export Citation
  • Saltos, A., Smith, D., Schreiber, K., Lichenstein, S., & Lichenstein, R. (2015). Cell-phone related injuries in the United States from 2000–2012. Journal of Safety Studies, 1(1), 114. https://doi.org/10.5296/jss.v1i1.7470

    • Search Google Scholar
    • Export Citation
  • Schabrun, S.M., Hoorn, W., Moorcroft, A., Greenland, C., & Hodges, P.W. (2014). Texting and walking: Strategies for postural control and implications for safety. PLoS One, 9, Article e84312. https://doi.org/10.1371/journal.pone.0084312

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schepers, M., Giuberti, M., & Bellusci, G. (2018). Xsens MVN: Consistent tracking of human motion using inertial sensing. Xsens Technologies, 18.

    • Search Google Scholar
    • Export Citation
  • Schielzeth, H., Dingemanse, N.J., Nakagawa, S., Westneat, D.F., Allegue, H., Teplitsky, C., Réale, D., Dochtermann, N.A., Garamszegi, L.Z., & Araya-Ajoy, Y.G. (2020). Robustness of linear mixed-effects models to violations of distributional assumptions. Methods in Ecology and Evolution, 11(9), 11411152. https://doi.org/10.1111/2041-210X.13434

    • Search Google Scholar
    • Export Citation
  • Shapiro, K. (2001). The limits of attention: Temporal constraints in human information processing. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198505150.001.0001

    • Search Google Scholar
    • Export Citation
  • Smith, D.C., Schreiber, K.M., Saltos, A., Lichenstein, S.B., & Lichenstein, R. (2013). Ambulatory cell phone injuries in the United States. Journal of Safety Research, 47, 1923. https://doi.org/10.1016/j.jsr.2013.08.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wells, H.L., McClure, L.A., Porter, B.E., & Schwebel, D.C. (2018). Distracted pedestrian behavior on two urban college campuses. Journal of Community Health, 43(1), 96102. https://doi.org/10.1007/s10900-017-0392-x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • White, M., White, J., Siuhi, S., & Mwakalonge, J. (2017). Self-reported behaviors and habits of distracted college pedestrians while walking. Transportation Research Record, 2661, 7683. https://doi.org/10.3141/2661-09

    • Search Google Scholar
    • Export Citation
  • Wilson, M.L., Rome, K., Hodgson, D., & Ball, P. (2008). Effect of textured foot orthotics on static and dynamic postural stability in middle-aged females. Gait & Posture, 27, 3642. https://doi.org/10.1016/j.gaitpost.2006.12.006

    • Search Google Scholar
    • Export Citation
  • Winter, D.A. (2009). Biomechanics and motor control of human movement (4th ed.). John Wiley & Sons.

  • Yogev-Seligmann, G., Rotem-Galili, Y., Mirelman, A., Dickstein, R., Giladi, N., & Hausdorff, J.M. (2010). How does explicit prioritization alter walking during dual-task performance? Effects of age and sex on gait speed and variability. Physical Therapy, 90(2), 177186. https://doi.org/10.2522/ptj.20090043

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang, J.T., Novak, A.C., Brouwer, B., & Li, Q. (2013). Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics. Physiological Measurement, 34(8), Article N63. https://doi.org/10.1088/0967-3334/34/8/N63

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zheng, H., Campbell, I.M., & Giang, W.C.W. (2021). Phone-related distracted walking injuries as a function of age and walking environment. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 65(1), 611615. https://doi.org/10.1177/1071181321651104

    • Search Google Scholar
    • Export Citation
  • Zheng, H., & Giang, W.C.W. (2021). Risk perception and distraction engagement with smart devices in different types of walking environments. Accident Analysis & Prevention, 162, Article 106405. https://doi.org/10.1016/j.aap.2021.106405

    • Search Google Scholar
    • Export Citation
  • Zheng, H., Luo, Y., Hu, B., & Giang, W.C.W. (2020). A comparison of workload demands imposed by different types of distracted walking tasks and its effect on gait. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 64, 17131717. https://doi.org/10.1177/1071181320641416

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 646 646 15
Full Text Views 97 97 5
PDF Downloads 118 118 6