Heating the Skin Over the Knee Improves Kinesthesia During Knee Extension

in Motor Control

Click name to view affiliation

Meghan Lamers Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada

Search for other papers by Meghan Lamers in
Current site
Google Scholar
PubMed
Close
,
Erika E. Howe Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada

Search for other papers by Erika E. Howe in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4476-9431
,
Geoffrey A. Power Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada

Search for other papers by Geoffrey A. Power in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2604-0740
, and
Leah R. Bent Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada

Search for other papers by Leah R. Bent in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8951-8783 *
Restricted access

To determine how heating affects dynamic joint position sense at the knee, participants (n = 11; F = 6) were seated in a HUMAC NORM dynamometer. The leg was passively moved through extension and flexion, and participants indicated when the 90° reference position was perceived, both at baseline (28.74 ± 2.43 °C) and heated (38.05 ± 0.16 °C) skin temperatures. Day 2 of testing reduced knee skin feedback with lidocaine. Directional error (actual leg angle–target angle) and absolute error (AE) were calculated. Heating reduced extension AE (baseline AE = 5.46 ± 2.39°, heat AE = 4.10 ± 1.97°), but not flexion. Lidocaine did not significantly affect flexion AE or extension AE. Overall, increased anterior knee-skin temperature improves dynamic joint position sense during passive knee extension, where baseline matching is poorer. Limited application of lidocaine to the anterior thigh, reducing some skin input, did not influence dynamic joint position sense, suggesting cutaneous receptors may play only a secondary role to spindle information during kinesthetic tasks. Importantly, cutaneous input from adjacent thigh regions cannot be ruled out as a contributor.

  • Collapse
  • Expand
  • Aimonetti, J., Roll, J., & Ribot-ciscar, E. (2007). Cutaneous afferents provide a neuronal population vector that encodes the orientation of human ankle movements. Journal of Physiology, 2, 649658. https://doi.org/10.1113/jphysiol.2006.123075

    • Search Google Scholar
    • Export Citation
  • Aman, J.E., Elangovan, N., Yeh, I., & Konczak, J. (2015). The effectiveness of proprioceptive training for improving motor function: A systematic review. Human Neuroscience, 8(January), 118. https://doi.org/10.3389/fnhum.2014.01075

    • Search Google Scholar
    • Export Citation
  • Baker, V., Bennell, K., Stillman, B., Cowan, S., & Crossley, K. (2002). Abnormal knee joint position sense in individuals with patellofemoral pain syndrome. Journal of Orthopaedic Research, 20(2), 208214. https://doi.org/10.1016/S0736-0266(01)00106-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Banks, R.W. (2006). An allometric analysis of the number of muscle spindles in mammalian skeletal muscles. Journal of Anatomy, 208(6), 753768. https://doi.org/10.1111/j.1469-7580.2006.00558.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bjerring, P., & Arendt-Nielsen, L. (1990). Depth and duration of skin analgesia to needle insertion after topical application of emla cream. British Journal of Anaesthesia, 64(2), 173177. https://doi.org/10.1093/bja/64.2.173

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Björkman, A., Weibull, A., Rosén, B., Svensson, J., & Lundborg, G. (2009). Rapid cortical reorganisation and improved sensitivity of the hand following cutaneous anaesthesia of the forearm. European Journal of Neuroscience, 29(4), 837844. https://doi.org/10.1111/j.1460-9568.2009.06629.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Burton, H., Terashima, S.I., & Clark, J. (1972). Response properties of slowly adapting mechanoreceptors to temperature stimulation in cats. Brain Research, 45(2), 401416. https://doi.org/10.1016/0006-8993(72)90471-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Callaghan, M.J., Selfe, J., Bagley, P.J., & Oldham, J.A. (2002). The effects of patellar taping on knee joint proprioception. Journal of Athletic Training, 37(1), 1924.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Callaghan, M.J., Selfe, J., McHenry, A., & Oldham, J.A. (2008). Effects of patellar taping on knee joint proprioception in patients with patellofemoral pain syndrome. Manual Therapy, 13(3), 192199. http://doi.org/10.1016/j.math.2006.11.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chambers, M., Duering, M.A., & Iggo, A. (1972). The structure and function of slowly adapting type II mechanoreceptor in hairy skin. Quarterly Journal of Experimental Physiology, 57(4), 417445. https://doi.org/10.1113/expphysiol.1972.sp002177

    • Search Google Scholar
    • Export Citation
  • Clark, F.J., Burgess, R.C., Chapin, J.W., & Lipscomb, W.T. (1985). Role of intramuscular receptors in the awareness of limb position. Journal of Neurophysiology, 54(6), 15291540. http://www.ncbi.nlm.nih.gov/pubmed/4087047

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Collins, D.F., Refshauge, K.M., Todd, G., & Gandevia, S.C. (2005). Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. Journal of Neurophysiology, 94(3), 16991706. http://jn.physiology.org/content/94/3/1699.abstract

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cordo, P., Carlton, L., Bevan, L., Carlton, M., & Kerr, G.K. (1994). Proprioceptive coordination of movement sequences: Role of velocity and position information. Journal of Neurophysiology, 71(5), 18481861. http://www.ncbi.nlm.nih.gov/pubmed/8064352

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Corniani, G., & Saal, H.P. (2020). Tactile innervation densities across the whole body. Journal of Neurophysiology, 124(4), 12291240. https://doi.org/10.1152/jn.00313.2020

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Edin, B.B. (2001). Cutaneous afferents provide information about knee joint movements in humans. Journal of Physiology, 531(1), 289297. https://doi.org/10.1111/j.1469-7793.2001.0289j.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Edin, B.B., & Abbs, J.H. (1991). Finger movement responses of cutaneous mechanoreceptors in the dorsal skin of the human hand. Journal of Neurophysiology, 65(3), 657670. https://doi.org/10.16373/j.cnki.ahr.150049

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gandevia, S.C., McCloskey, D.I., & Burke, D. (1992). Kinaesthetic signals and muscle contraction. Trends in Neurosciences, 15(2), 6265. https://doi.org/10.1016/0166-2236(92)90028-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ghaffarinejad, F., Haghighi, F.M., Pirouzi, S., Taghizadeh, S., Motiallah, T., & Salehi, N. (2014). The comparison of the effect of deep and superficial heat on healthy ankle joint position sense. Journal of Rehabilitation Sciences and Research, 1, 6366. https://doi.org/10.30476/JRSR.2014.41057

    • Search Google Scholar
    • Export Citation
  • Goede, I.A., & Betcher, D.L. (1994). EMLA. J Pediatr Oncol Nurs, 11(1), 38-41. doi: https://doi.org/10.1177/104345429401100110. PMID: 8142084.

  • Goodwin, G.M., Mccloskey, D.I., & Matthews, P.B.C. (1972). The contribution of muscle afferents to kinesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain, 95(4), 705748. https://doi.org/10.1093/brain/95.4.705

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Houk, J.C., Rymer, W.Z., & Crago, P.E. (2013). Dependence of dynamic response of spindle receptors on muscle length and velocity. Journal of Neurophysiology, 46(1), 143166. http://jn.physiology.org/content/46/1/143.long

    • Search Google Scholar
    • Export Citation
  • Howe, E.E., Toth, A.J., Vallis, L.A., & Bent, L.R. (2015). Baseline skin information from the foot dorsum is used to control lower limb kinematics during level walking. Experimental Brain Research, 233(8), 24772487. https://doi.org/10.1007/s00221-015-4318-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hudson, K.M., Condon, M., Ackerley, R., McGlone, F., Olausson, H., Macefield, V.G., & Birznieks, I. (2015). Effects of changing skin mechanics on the differential sensitivity to surface compliance by tactile afferents in the human finger pad. Journal of Neurophysiology, 114(4), 22492257. https://doi.org/10.1152/jn.00176.2014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inglis, J.T., & Frank, J.S. (1990). The effect of agonist/antagonist muscle vibration on human position sense. Experimental Brain Research, 81(3), 573580. https://doi.org/10.1007/BF02423506

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Johansson, R.S., & Vallbo, A.B. (1979). Detection of tactile stimuli. Thresholds of afferent units related to psychophysical thresholds in the human hand. The Journal of Physiology, 297(1), 405422. https://doi.org/10.1113/jphysiol.1979.sp013048

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuling, I.A., Brenner, E., & Smeets, J.B.J. (2016). Proprioceptive localization of the hand changes when skin stretch around the elbow is manipulated. Frontiers in Psychology, 7(October), 111. https://doi.org/10.3389/fpsyg.2016.01620

    • Search Google Scholar
    • Export Citation
  • Lamers, M., Reeves, J., Alshamali, R., Murnaghan, C., & Bent, L. (2019). Can texture change joint position sense at the knee joint in those with poor joint position accuracy? Somatosensory & Motor Research, 36(3), 230240. https://doi.org/10.1080/08990220.2019.1659765

    • Search Google Scholar
    • Export Citation
  • Lee, Y., & Hwang, K. (2002). Skin thickness of Korean adults received. Surgical and Radiologic Anatomy, 24(3–4), 183189. https://doi.org/10.1007/s00276-002-0034-5

    • Search Google Scholar
    • Export Citation
  • Lowrey, C.R., Strzalkowski, N.D.J., & Bent, L.R. (2010). Skin sensory information from the dorsum of the foot and ankle is necessary for kinesthesia at the ankle joint. Neuroscience Letters, 485(1), 610. https://doi.org/10.1016/j.neulet.2010.08.033

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lowrey, C.R., Strzalkowski, N.D.J., & Bent, L.R. (2013). Cooling reduces the cutaneous afferent firing response to vibratory stimuli in glabrous skin of the human foot sole. Journal of Neurophysiology, 109(3), 839850. https://doi.org/10.1152/jn.00381.2012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Macdonald, B., Smith, S., Beaudette, S., Brown, S., & Bent, L. (2019). How varying levels of skin stretch affect perceived skin stretch sensitivity. In International Society for Posture and Gait Research (ISPGR) (p. 207). https://doi.org/10.1016/j.gaitpost.2019.07.073

    • Search Google Scholar
    • Export Citation
  • Macefield, V.G., Norcliffe-Kaufmann, L., Goulding, N., Palma, J.-A., Fuente Mora, C., & Kaufmann, H. (2016). Increasing cutaneous afferent feedback improves proprioceptive accuracy at the knee in patients with sensory ataxia. Journal of Neurophysiology, 115(2), 711716. http://jn.physiology.org/content/115/2/711.abstract

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mancini, F., Bauleo, A., Cole, J., Lui, F., Porro, C.A., Haggard, P., & Iannetti, G.D. (2014). Whole-body mapping of spatial acuity for pain and touch. Annals of Neurology, 75(6), 917924. https://doi.org/10.1002/ana.24179

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mccloskey, D.I., Cross, M.J., Honner, R., & Potter, E.K. (1983). Sensory effects of pulling or vibrating exposed tendons in man. Brain, 106(1), 2137. https://doi.org/10.1093/brain/106.1.21

    • Search Google Scholar
    • Export Citation
  • Mense, S. (1978). Effects of temperature on the discharges of muscle spindles and tendon organs. European Journal of Physiology, 166(374), 159166. https://doi.org/10.1007/BF00581297

    • Search Google Scholar
    • Export Citation
  • Meyer, P.F., Oddsson, L.I.E. , & De Luca, C.J. (2004). The role of plantar cutaneous sensation in unperturbed stance. Experimental Brain Research, 156(4), 505512. https://doi.org/10.1007/s00221-003-1804-y

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mildren, R.L., Yip, M.C., Lowrey, C.R., Harpur, C., Brown, S.H.M., & Bent, L.R. (2017). Ageing reduces light touch and vibrotactile sensitivity on the anterior lower leg and foot dorsum. Experimental Gerontology, 99, 16. https://doi.org/10.1016/j.exger.2017.09.007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oosterveld, F.G.J., & Rasker, J.J. (1994). Effects of local heat and cold treatment on surface and articular temperature of arthritic knees. Arthritis and Rheumatism, 37(11), 15781582. https://doi.org/10.1002/art.1780371104

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perlau, R., & Frank, C. (1995). The effect of elastic bandages on human knee proprioception in the uninjured population. The American Journal of Sports Medicine, 23(2), 251255. https://doi.org/10.1177/036354659502300221

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Petoe, M.A., Jaque, F.A.M., Byblow, W.D., & Stinear, C.M. (2013). Cutaneous anesthesia of the forearm enhances sensorimotor function of the hand. Journal of Neurophysiology, 109(4), 10911096. https://doi.org/10.1152/jn.00813.2012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Proske, U., & Gandevia, S.C. (2012). The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiological Reviews, 92(4), 16511697. http://physrev.physiology.org/content/92/4/1651.abstract

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Roll, J.P., & Vedel, J.P. (1982). Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Experimental Brain Research, 47, 177190. https://doi.org/10.1007/BF00239377

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sato, H. (1983). Effects of skin cooling and warming on stretch responses of the muscle spindle primary and secondary afferent fibers from the cat’s tibialis anterior. Experimental Neurology, 81(2), 446458. https://doi.org/10.1016/0014-4886(83)90274-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schlee, G., Sterzing, T., & Milani, T.L. (2009). Foot sole skin temperature affects plantar foot sensitivity. Clinical Neurophysiology, 120(8), 15481551. https://doi.org/10.1016/j.clinph.2009.06.010

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schmidt, D., Germano, A.M.C., & Milani, T.L. (2016). Effects of active and passive warming of the foot sole on vibration perception thresholds. Clinical Neurophysiology Practice, 2, 3843. https://doi.org/10.1016/j.cnp.2016.12.005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Strzalkowski, N.D.J., Triano, J.J., Lam, C.K., Templeton, C.A., & Bent, L.R. (2015). Thresholds of skin sensitivity are partially influenced by mechanical properties of the skin on the foot sole. Physiological Reports, 3(6), Article e12425.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Torres, R., & Trindade, R. (2016). The effect of kinesiology tape on knee proprioception in healthy subjects. Journal of Bodywork and Movement Therapies, 20, 857862. https://doi.org/10.1016/j.jbmt.2016.02.009

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tracey, E.H., Greene, A.J., & Doty, R.L. (2012). Optimizing reliability and sensitivity of Semmes-Weinstein monofilaments for establishing point tactile thresholds. Physiology and Behavior, 105(4), 982986. https://doi.org/10.1016/j.physbeh.2011.11.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van Hees, J., & Gybels, J. (1981). C nociceptor activity in human nerve during painful and non painful skin stimulation. Journal of Neurology Neurosurgery and Psychiatry, 44(7), 600607. https://doi.org/10.1136/jnnp.44.7.600

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van Melick, N., Meddeler, B.M., Hoogeboom, T.J., Nijhuis-van der Sanden, M.W.G., & Van Cingel, R.E.H. (2017). How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS One, 12(12), Article e0189876. https://doi.org/10.1371/journal.pone.0189876

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Verschueren, S.M.P., Brumagne, S., Swinnen, S.P., & Cordo, P.J. (2002). The effect of aging on dynamic position sense at the ankle. Behavioural Brain Research, 136(2), 593603. https://doi.org/10.1016/S0166-4328(02)00224-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu, D., Hong, Y., Li, J., & Chan, K. (2004). Effect of tai chi exercise on proprioception of ankle and knee joints in old people. British Journal of Sports Medicine, 38(1), 5054. https://doi.org/10.1136/bjsm.2002.003335

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xu, F., Lu, T.J., & Seffen, K.A. (2008). Biothermomechanical behavior of skin tissue. Acta Mechanica Sinica/Lixue Xuebao, 24(1), 123. https://doi.org/10.1007/s10409-007-0128-8

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 679 679 30
Full Text Views 28 28 1
PDF Downloads 37 37 1