Intramuscle Synergies: Their Place in the Neural Control Hierarchy

in Motor Control

Click name to view affiliation

Mark L. Latash Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA

Search for other papers by Mark L. Latash in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3102-2571 *
,
Shirin Madarshahian Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA

Search for other papers by Shirin Madarshahian in
Current site
Google Scholar
PubMed
Close
, and
Joseph M. Ricotta Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
Clinical and Translational Science Institute, Penn State College of Medicine, Hershey, PA, USA

Search for other papers by Joseph M. Ricotta in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5902-5964
Restricted access

We accept a definition of synergy introduced by Nikolai Bernstein and develop it for various actions, from those involving the whole body to those involving a single muscle. Furthermore, we use two major theoretical developments in the field of motor control—the idea of hierarchical control with spatial referent coordinates and the uncontrolled manifold hypothesis—to discuss recent studies of synergies within spaces of individual motor units (MUs) recorded within a single muscle. During the accurate finger force production tasks, MUs within hand extrinsic muscles form robust groups, with parallel scaling of the firing frequencies. The loading factors at individual MUs within each of the two main groups link them to the reciprocal and coactivation commands. Furthermore, groups are recruited in a task-specific way with gains that covary to stabilize muscle force. Such force-stabilizing synergies are seen in MUs recorded in the agonist and antagonist muscles but not in the spaces of MUs combined over the two muscles. These observations reflect inherent trade-offs between synergies at different levels of a control hierarchy. MU-based synergies do not show effects of hand dominance, whereas such effects are seen in multifinger synergies. Involuntary, reflex-based, force changes are stabilized by intramuscle synergies but not by multifinger synergies. These observations suggest that multifinger (multimuscle synergies) are based primarily on supraspinal circuitry, whereas intramuscle synergies reflect spinal circuitry. Studies of intra- and multimuscle synergies promise a powerful tool for exploring changes in spinal and supraspinal circuitry across patient populations.

  • Collapse
  • Expand
  • Abolins, V., & Latash, M.L. (2021). The nature of finger enslaving: New results and their implications. Motor Control, 25(4), 680703. https://doi.org/10.1123/mc.2021-0044

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Adamovich, S.V., Levin, M.F., & Feldman, A.G. (1997). Central modifications of reflex parameters may underlie the fastest arm movements. Journal of Neurophysiology, 77(3), 14601469. https://doi.org/10.1152/jn.1997.77.3.1460

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Mattos, D., Zatsiorsky, V.M., & Latash, M.L. (2016). Synergies in the space of control variables within the equilibrium-point hypothesis. Neuroscience, 315, 150161. https://doi.org/10.1016/j.neuroscience.2015.12.012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aoki, T., Latash, M.L., & Zatsiorsky, V.M. (2007). Adjustments to local friction in multifinger prehension. Journal of Motor Behavior, 39(4), 276290. https://doi.org/10.3200/JMBR.39.4.276-290

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aoki, T., Niu, X., Latash, M.L., & Zatsiorsky, V.M. (2006). Effects of friction at the digit-object interface on the digit forces in multi-finger prehension. Experimental Brain Research, 172(4), 425438. https://doi.org/10.1007/s00221-006-0350-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bagesteiro, L.B., & Sainburg, R.L. (2002). Handedness: Dominant arm advantages in control of limb dynamics. Journal of Neurophysiology, 88(5), 24082421. https://doi.org/10.1152/jn.00901.2001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bagesteiro, L.B., & Sainburg, R.L. (2003). Nondominant arm advantages in load compensation during rapid elbow joint movements. Journal of Neurophysiology, 90(3), 15031513. https://doi.org/10.1152/jn.00189.2003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berkinblit, M.B., Feldman, A.G., & Fukson, O.I. (1986). Adaptability of innate motor patterns and motor control mechanisms. Behavioral and Brain Sciences, 9(4), 585599. https://doi.org/10.1017/S0140525X00051268

    • Search Google Scholar
    • Export Citation
  • Berkinblit, M.B., Gelfand, I.M., & Feldman, A.G. (1986). A model for the control of multijoint movements. Biofizika, 31, 128138.

  • Bernstein, N.A. (1930). A new method of mirror cyclographie and its application towards the study of labor movements during work on a workbench. Hygiene, Safety and Pathology of Labor, 5, 39 [and # 6, pp. 3–11 (in Russian)].

    • Search Google Scholar
    • Export Citation
  • Bernstein, N.A. (1935). The problem of interrelation between coordination and localization. Archives of Biological Science, 38, 135.

  • Bernstein, N.A. (1947). On the construction of movements. Medgiz [English translation in Latash 2020].

  • Bizzi, E., & Ajemian, R. (2020). From motor planning to execution: A sensorimotor loop perspective. Journal of Neurophysiology, 124(6), 18151823. https://doi.org/10.1152/jn.00715.2019

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bosco, G., & Poppele, R.E. (2002). Encoding of hindlimb kinematics by spinocerebellar circuitry. Archives Italiennes de Biologie, 140, 185192.

  • Brown, P., & Marsden, J.F. (2001). Cortical network resonance and motor activity in humans. Neuroscientist, 7(6), 518526. https://doi.org/10.1177/107385840100700608

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bruton, M., & O’Dwyer, N. (2018). Synergies in coordination: A comprehensive overview of neural, computational, and behavioral approaches. Journal of Neurophysiology, 120(6), 27612774. https://doi.org/10.1152/jn.00052.2018

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Burgar, C.G., Valero-Cuevas, F.J., & Hentz, V.R. (1997). Fine-wire electromyographic recording during force generation: Application to index finger kinesiologic studies. American Journal of Physical Medicine and Rehabilitation, 76(6), 494501. https://doi.org/10.1097/00002060-199711000-00012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Butler, T.J., Kilbreath, S.L., Gorman, R.B., & Gandevia, S.C. (2005). Selective recruitment of single motor units in human flexor digitorum superficialis muscle during flexion of individual fingers. Journal of Physiology, 567(1), 301309. https://doi.org/10.1113/jphysiol.2005.089201

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Christova, P., & Kossev, A. (2001). Human motor unit recruitment and derecruitment during long lasting intermittent contractions. Journal of Electromyography and Kinesiology, 11(3), 189196. https://doi.org/10.1016/S1050-6411(00)00052-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Contessa, P., & DeLuca, C.J. (2013). Neural control of muscle force: Indications from a simulation model. Journal of Neurophysiology, 109(6), 15481570. https://doi.org/10.1152/jn.00237.2012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cuadra, C., Bartsch, A., Tiemann, P., Reschechtko, S., & Latash, M.L. (2018). Multi-finger synergies and the muscular apparatus of the hand. Experimental Brain Research, 236(5), 13831393. https://doi.org/10.1007/s00221-018-5231-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cuadra, C., Wojnicz, W., Kozinc, Z., & Latash, M.L. (2020). Perceptual and motor effects of muscle co-activation in a force production task. Neuroscience, 437, 3444. https://doi.org/10.1016/j.neuroscience.2020.04.023

    • Search Google Scholar
    • Export Citation
  • Danna-Dos-Santos, A., Slomka, K., Zatsiorsky, V.M., & Latash, M.L. (2007). Muscle modes and synergies during voluntary body sway. Experimental Brain Research, 179(4), 533550. https://doi.org/10.1007/s00221-006-0812-0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Day, B.L., Riescher, H., Struppler, A., Rothwell, J.C., & Marsden, C.D. (1991). Changes in the response to magnetic and electrical stimulation of the motor cortex following muscle stretch in man. Journal of Physiology, 433(1), 4157. https://doi.org/10.1113/jphysiol.1991.sp018413

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Freitas, P.B., Freitas, S.M.S.F., Lewis, M.M., Huang, X., & Latash, M.L. (2018). Stability of steady hand force production explored across spaces and methods of analysis. Experimental Brain Research, 236(6), 15451562. https://doi.org/10.1007/s00221-018-5238-y

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Freitas, P.B., Freitas, S.M.S.F., Lewis, M.M., Huang, X., & Latash, M.L. (2019). Individual preferences in motor coordination seen across the two hands: Relations to movement stability and optimality. Experimental Brain Research, 237(1), 113. https://doi.org/10.1007/s00221-018-5393-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Luca, C.J., Chang, S.S., Roy, S.H., Kline, J.C., & Nawab, S.H. (2015). Decomposition of surface EMG signals from cyclic dynamic contractions. Journal of Neurophysiology, 113(6), 19411951. https://doi.org/10.1152/jn.00555.2014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Diedrichsen, J., Shadmehr, R., & Ivry, R.B. (2010). The coordination of movement: Optimal feedback control and beyond. Trends in Cognitive Science, 14(1), 3139. https://doi.org/10.1016/j.tics.2009.11.004

    • Search Google Scholar
    • Export Citation
  • Ejaz, N., Hamada, M., & Diedrichsen, J. (2015). Hand use predicts the structure of representation in sensorimotor cortex. Nature Neuroscience, 18(7), 10341040. https://doi.org/10.1038/nn.4038

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Enoka, R.M., Robinson, G.A., & Kossev, A.R. (1989). Task and fatigue effects on low-threshold motor units in human hand muscle. Journal of Neurophysiology, 62(6), 13441359. https://doi.org/10.1152/jn.1989.62.6.1344

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Erlhagen, W., & Schöner, G. (2002). Dynamic field theory of movement preparation. Psychological Reviews, 109(3), 545572. https://doi.org/10.1037/0033-295X.109.3.545

    • Search Google Scholar
    • Export Citation
  • Falaki, A., Huang, X., Lewis, M.M., & Latash, M.L. (2016). Impaired synergic control of posture in Parkinson’s patients without postural instability. Gait and Posture, 44, 209215. https://doi.org/10.1016/j.gaitpost.2015.12.035

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Falaki, A., Huang, X., Lewis, M.M., & Latash, M.L. (2017). Motor equivalence and structure of variance: Multi-muscle postural synergies in Parkinson’s disease. Experimental Brain Research, 235(7), 22432258. https://doi.org/10.1007/s00221-017-4971-y

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Farina, D., Holobar, A., Merletti, R., & Enoka, R.M. (2010). Decoding the neural drive to muscles from the surface electromyogram. Clinical Neurophysiology, 121(10), 16161623. https://doi.org/10.1016/j.clinph.2009.10.040

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Farina, D., Merletti, R., & Enoka, R.M. (2004). The extraction of neural strategies from the surface EMG. Journal of Applied Physiology, 96(4), 14861495. https://doi.org/10.1152/japplphysiol.01070.2003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Farina, D., Merletti, R., & Enoka, R.M. (2014). The extraction of neural strategies from the surface EMG: An update. Journal of Applied Physiology, 117(11), 12151230. https://doi.org/10.1152/japplphysiol.00162.2014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1966). Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biophysics, 11, 565578.

    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1980). Superposition of motor programs. I. Rhythmic forearm movements in man. Neuroscience, 5, 8190. https://doi.org/10.1016/0306-4522(80)90073-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1986). Once more on the equilibrium-point hypothesis (λ–model) for motor control. Journal of Motor Behavior, 18(1), 1754. https://doi.org/10.1080/00222895.1986.10735369

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (2015). Referent control of action and perception: Challenging conventional theories in behavioral science. Springer.

  • Feldman, A.G., Levin, M.F., Garofolini, A., Piscitelli, D., & Zhang, L. (2021). Central pattern generator and human locomotion in the context of referent control of motor actions. Clinical Neurophysiology, 132(11), 28702889. https://doi.org/10.1016/j.clinph.2021.08.016

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G., & Orlovsky, G.N. (1972). The influence of different descending systems on the tonic stretch reflex in the cat. Experimental Neurology, 37(3), 481494. https://doi.org/10.1016/0014-4886(72)90091-X

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Flanagan, J.R., & Wing, A.M. (1995). The stability of precision grip forces during cyclic arm movements with a hand-held load. Experimental Brain Research, 105, 455464. https://doi.org/10.1007/BF00233045

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Freitas, S.M.S.F., de Freitas, P.B., Lewis, M.M., Huang, X., & Latash, M.L. (2019). Quantitative analysis of multi-element synergies stabilizing performance: Comparison of three methods with respect to their use in clinical studies. Experimental Brain Research, 237(2), 453465. https://doi.org/10.1007/s00221-018-5436-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fuglevand, A.J., Dutoit, A.P., Johns, R.K., & Keen, D.A. (2006). Evaluation of plateau-potential-mediated “warm up” in human motor units. Journal of Physiology, 571(3), 683693. https://doi.org/10.1113/jphysiol.2005.099705

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fuglevand, A.J., Macefield, V.G., & Bigland-Ritchie, B. (1999). Force-frequency and fatigue properties of motor units in muscles that control digits of the human hand. Journal of Neurophysiology, 81(4), 17181729. https://doi.org/10.1152/jn.1999.81.4.1718

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fukai, T. (1999). Sequence generation in arbitrary temporal patterns from theta-nested gamma oscillations: A model of the basal ganglia-thalamo-cortical loops. Neural Networks, 12(7–8), 975987. https://doi.org/10.1016/S0893-6080(99)00057-X

    • Search Google Scholar
    • Export Citation
  • Fukson, O.I., Berkinblit, M.B., & Feldman, A.G. (1980). The spinal frog takes into account the scheme of its body during the wiping reflex. Science, 209(4462), 12611263. https://doi.org/10.1126/science.7403886

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gelfand, I.M., & Latash, M.L. (1998). On the problem of adequate language in movement science. Motor Control, 2(4), 306313. https://doi.org/10.1123/mcj.2.4.306

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Georgopoulos, A.P. (1986). On reaching. Annual Review of Neuroscience, 9(1), 147170. https://doi.org/10.1146/annurev.ne.09.030186.001051

  • Georgopoulos, A.P., Ashe, J., Smyrnis, N., & Taira, M. (1992). The motor cortex and the coding of force. Science, 256(5064), 16921695. https://doi.org/10.1126/science.256.5064.1692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gera, G., Freitas, S.M., & Scholz, J.P. (2016). Relationship of diminished interjoint coordination after stroke to hand path consistency. Experimental Brain Research, 234(3), 741751. https://doi.org/10.1007/s00221-015-4500-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gera, G., McGlade, K.E., Reisman, D.S., & Scholz, J.P. (2016). Trunk muscle coordination during upward and downward reaching in stroke survivors. Motor Control, 20(1), 5069. https://doi.org/10.1123/mc.2014-0038

    • Search Google Scholar
    • Export Citation
  • Gerasimenko, Y., Roy, R.R., & Edgerton, V.R. (2008). Epidural stimulation: Comparison of the spinal circuits that generate and control locomotion in rats, cats and humans. Experimental Neurology, 209(2), 417425. https://doi.org/10.1016/j.expneurol.2007.07.015

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Giszter, S.F., Mussa-Ivaldi, F.A., & Bizzi, E. (1993). Convergent force fields organized in the frog’s spinal cord. Journal of Neuroscience, 13(2), 467491. https://doi.org/10.1523/JNEUROSCI.13-02-00467.1993

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goodman, J.M., Tabot, G.A., Lee, A.S., Suresh, A.K., Rajan, A.T., Hatsopoulos, N.G., & Bensmaia, S. (2019). Postural representations of the hand in the primate sensorimotor cortex. Neuron, 104(5), 10001009. https://doi.org/10.1016/j.neuron.2019.09.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gorniak, S., Zatsiorsky, V.M., & Latash, M.L. (2007). Hierarchies of synergies: An example of the two-hand, multi-finger tasks. Experimental Brain Research, 179(2), 167180. https://doi.org/10.1007/s00221-006-0777-z

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gorniak, S., Zatsiorsky, V.M., & Latash, M.L. (2009). Hierarchical control of static prehension: II. Multi-digit synergies. Experimental Brain Research, 194(1), 115. https://doi.org/10.1007/s00221-008-1663-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hasanbarani, F., & Latash, M.L. (2020). Performance-stabilizing synergies in a complex motor task: Analysis based on the uncontrolled manifold hypothesis. Motor Control, 24(2), 238252. https://doi.org/10.1123/mc.2019-0049

    • Search Google Scholar
    • Export Citation
  • Hatanaka, N., Nambu, A., Yamashita, A., Takada, M., & Takuno, H. (2001). Somatotopic arrangement and corticocortical inputs of the hindlimb region of the primary motor cortex in the macaque monkey. Neuroscience Research, 40(1), 922. https://doi.org/10.1016/S0168-0102(01)00210-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Henneman, E., Somjen, G., & Carpenter, D.O. (1965). Excitability and inhibitibility of motoneurones of different sizes. Journal of Neurophysiology, 28(3), 599620. https://doi.org/10.1152/jn.1965.28.3.599

    • Search Google Scholar
    • Export Citation
  • Hoehn, M., & Yahr, M. (1967). Parkinsonism: Onset, progression and mortality. Neurology, 17(5), 427427. https://doi.org/10.1212/WNL.17.5.427

  • Houk, J.C. (2005). Agents of the mind. Biological Cybernetics, 92(6), 427437. https://doi.org/10.1007/s00422-005-0569-8

  • Hughlings Jackson, J. (1889). On the comparative study of disease of the nervous system. British Medical Journal, 2, 355362.

  • Hultborn, H. (2006). Spinal reflexes, mechanisms and concepts: From Eccles to Lundberg and beyond. Progress in Neurobiology, 78(3–5), 215232. https://doi.org/10.1016/j.pneurobio.2006.04.001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hultborn, H., Brownstone, R.B., Toth, T.I., & Gossard, J.P. (2004). Key mechanisms for setting the input–output gain across the motoneuron pool. Progress in Brain Research, 143, 7795. https://doi.org/10.1016/S0079-6123(03)43008-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ioffe, M.E., Chernikova, L.A., & Ustinova, K.I. (2007). Role of cerebellum in learning motor tasks. Cerebellum, 6(1), 8794. https://doi.org/10.1080/14734220701216440

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ivanenko, Y.P., Poppele, R.E., & Lacquaniti, F. (2006). Motor control programs and walking. Neuroscientist, 12(4), 339348. https://doi.org/10.1177/1073858406287987

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jeneson, J.A., Taylor, J.S., Vigneron, D.B., Willard, T.S., Carvajal, L., Nelson, S.J., Murphy-Boesch, J., & Brown, T.R. (1990). 1H MR imaging of anatomical compartments within the finger flexor muscles of the human forearm. Magnetic Resonance in Medicine, 15(3), 491496. https://doi.org/10.1002/mrm.1910150316

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jo, H.J., Lucassen, E., Huang, X., & Latash, M.L. (2017). Changes in multi-digit synergies and their feed-forward adjustments in multiple sclerosis. Journal of Motor Behavior, 49(2), 218228. https://doi.org/10.1080/00222895.2016.1169986

    • Search Google Scholar
    • Export Citation
  • Jo, H.J., Maenza, C., Good, D.C., Huang, X., Park, J., Sainburg, R.L., & Latash, M.L. (2016). Effects of unilateral stroke on multi-finger synergies and their feed-forward adjustments. Neuroscience, 319, 194205. https://doi.org/10.1016/j.neuroscience.2016.01.054

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jo, H.J., Park, J., Lewis, M.M., Huang, X., & Latash, M.L. (2015). Prehension synergies and hand function in early-stage Parkinson’s disease. Experimental Brain Research, 233(2), 425440. https://doi.org/10.1007/s00221-014-4130-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Johansson, R.S., & Cole, K.J. (1994). Grasp stability during manipulative actions. Canadian Journal of Physiology and Pharmacology, 72(5), 511524. https://doi.org/10.1139/y94-075

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kalaska, J.F. (1988). The representation of arm movement in postcentral and parietal cortex. Canadian Journal of Physiology and Pharmacology, 66(4), 455463. https://doi.org/10.1139/y88-075

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kalaska, J.F., Cohen, D.A., Hyde, M.L., & Prud’homme, M. (1989). A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two- dimensional reaching task. Journal of Neuroscience, 9(6), 20802102. https://doi.org/10.1523/JNEUROSCI.09-06-02080.1989

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kapreli, E., Athanasopoulos, S., Papathanasiou, M., Van Hecke, P., Keleki, D., Peeters, R., Strimpakos, N., & Sunaert, S. (2007). Lower limb somatosensory network: Issues of somatotopy and overlap. Cortex, 43(2), 219232. https://doi.org/10.1016/S0010-9452(08)70477-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karst, G.M., & Hasan, Z. (1987). Antagonist muscle activity during human forearm movements under varying kinematic and loading conditions. Experimental Brain Research, 67(2), 391401. https://doi.org/10.1007/BF00248559

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karst, G.M., & Hasan, Z. (1990). Direction-dependent strategy for control of multi-joint arm movements. In J.M. Winters & S.L.-Y. Woo (Eds.), Multiple muscle systems. Biomechanics and movement organization (pp. 268281). Springer-Verlag.

    • Search Google Scholar
    • Export Citation
  • Katz, R., & Pierrot-Deseilligny, E. (1999). Recurrent inhibition in humans. Progress in Neurobiology, 57(3), 325355. https://doi.org/10.1016/S0301-0082(98)00056-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Keen, D.A., & Fuglevand, A.J. (2004). Common input to motor neurons innervating the same and different compartments of the human extensor digitorum muscle. Journal of Neurophysiology, 91(1), 5762. https://doi.org/10.1152/jn.00650.2003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Klous, M., Danna-dos-Santos, A., & Latash, M.L. (2010). Multi-muscle synergies in a dual postural task: Evidence for the principle of superposition. Experimental Brain Research, 202(2), 457471. https://doi.org/10.1007/s00221-009-2153-2

    • Search Google Scholar
    • Export Citation
  • Knight, C.A., & Kamen, G. (1985). Modulation of motor unit firing rates during a complex sinusoidal force task in young and older adults. Journal of Applied Physiology, 102(1), 122129. https://doi.org/10.1152/japplphysiol.00455.2006

    • Search Google Scholar
    • Export Citation
  • Krishnamoorthy, V., Goodman, S.R., Latash, M.L., & Zatsiorsky, V.M. (2003). Muscle synergies during shifts of the center of pressure by standing persons: Identification of muscle modes. Biological Cybernetics, 89(2), 152161. https://doi.org/10.1007/s00422-003-0419-5

    • Search Google Scholar
    • Export Citation
  • Krishnamoorthy, V., Latash, M.L., Scholz, J.P., & Zatsiorsky, V.M. (2003). Muscle synergies during shifts of the center of pressure by standing persons. Experimental Brain Research, 152(3), 281292. https://doi.org/10.1007/s00221-003-1574-6

    • Search Google Scholar
    • Export Citation
  • Lacquaniti, F., Ivanenko, Y.P., & Zago, M. (2012). Development of human locomotion. Current Opinions in Neurobiology, 22(5), 822828. https://doi.org/10.1016/j.conb.2012.03.012

    • Search Google Scholar
    • Export Citation
  • Laine, C.M., Nagamori, A., & Valero-Cuevas, F.J. (2016). The dynamics of voluntary force production in afferented muscle influence involuntary tremor. Frontiers in Computational Neuroscience, 10, Article 86. https://doi.org/10.3389/fncom.2016.00086

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Landsmeer, J.M.F., & Long, C. (1965). The mechanism of finger control, based on electromyograms and location analysis. Acta Anatomica, 60(3), 330347. https://doi.org/10.1159/000142668

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (1992). Virtual trajectories, joint stiffness, and changes in natural frequency during single-joint oscillatory movements. Neuroscience, 49(1), 209220. https://doi.org/10.1016/0306-4522(92)90089-K

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (1993). Control of human movement. Human Kinetics.

  • Latash, M.L. (1994). Reconstruction of equilibrium trajectories and joint stiffness patterns during single-joint voluntary movements under different instructions. Biological Cybernetics, 71(5), 441450. https://doi.org/10.1007/BF00198920

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2008). Synergy. Oxford University Press.

  • Latash, M.L. (2010). Motor synergies and the equilibrium-point hypothesis. Motor Control, 14(3), 294322. https://doi.org/10.1123/mcj.14.3.294

  • Latash, M.L. (2012). The bliss (not the problem) of motor abundance (not redundancy). Human Movement Science, 217, 15.

  • Latash, M.L. (2018). Muscle co-activation: Definitions, mechanisms, and functions. Journal of Neurophysiology, 120(1), 88104. https://doi.org/10.1152/jn.00084.2018

    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (Ed.) (2020a). Bernstein’s construction of movements. Routledge.

  • Latash, M.L. (2020b). On primitives in motor control. Motor Control, 24(2), 318346. https://doi.org/10.1123/mc.2019-0099

  • Latash, M.L. (2021a). Laws of nature that define biological action and perception. Physics of Life Reviews, 36, 4767. https://doi.org/10.1016/j.plrev.2020.07.007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2021b). One more time about motor (and non-motor) synergies. Experimental Brain Research, 239(10), 29512967. https://doi.org/10.1007/s00221-021-06188-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2023). Optimality, stability, and agility of human movement: New optimality criterion and trade-offs. Motor Control, 27(1), 123159. https://doi.org/10.1123/mc.2021-0135

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Gottlieb, G.L. (1991). Reconstruction of elbow joint compliant characteristics during fast and slow voluntary movements. Neuroscience, 43(2–3), 697712. https://doi.org/10.1016/0306-4522(91)90328-L

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Gottlieb, G.L. (1992). Virtual trajectories of single-joint movements performed under two basic strategies. Neuroscience, 47(2), 357365. https://doi.org/10.1016/0306-4522(92)90252-W

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Huang, X. (2015). Neural control of movement stability: Lessons from studies of neurological patients. Neuroscience, 301, 3948. https://doi.org/10.1016/j.neuroscience.2015.05.075

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Scholz, J.P., & Schöner, G. (2007). Toward a new theory of motor synergies. Motor Control, 11(3), 276308. https://doi.org/10.1123/mcj.11.3.276

    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Shim, J.K., Smilga, A.V., & Zatsiorsky, V. (2005). A central back-coupling hypothesis on the organization of motor synergies: A physical metaphor and a neural model. Biological Cybernetics, 92(3), 186191. https://doi.org/10.1007/s00422-005-0548-0

    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Zatsiorsky, V.M. (2016). Biomechanics and motor control: Defining central concepts. Academic Press.

  • Lemon, R.N., Baker, S.N., Davis, J.A., Kirkwood, P.A., Maier, M.A., & Yang, H.S. (1998). The importance of the cortico-motoneuronal system for control of grasp. Novartis Foundation Symposium, 218, 202215. https://doi.org/10.1002/9780470515563.ch11

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Leone, F.C., Nottingham, R.B., & Nelson, L.S. (1961). The folded normal distribution. Technometrics, 3(4), 543550. https://doi.org/10.1080/00401706.1961.10489974

    • Search Google Scholar
    • Export Citation
  • Levin, M.F., & Dimov, M. (1997). Spatial zones for muscle coactivation and the control of postural stability. Brain Research, 757(1), 4359. https://doi.org/10.1016/S0006-8993(97)00204-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lewis, M.M., Lee, E.-Y., Jo, H.J., Park, J., Latash, M.L., & Huang, X. (2016). Synergy as a new and sensitive marker of basal ganglia dysfunction: A study of asymptomatic welders. Neurotoxicology, 56, 7685. https://doi.org/10.1016/j.neuro.2016.06.016

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li, Z.M., Zatsiorsky, V.M., & Latash, M.L. (2000). Contribution of the extrinsic and intrinsic hand muscles to the moments in finger joints. Clinical Biomechanics, 15(3), 203211. https://doi.org/10.1016/S0268-0033(99)00058-3

    • Search Google Scholar
    • Export Citation
  • Madarshahian, S., & Latash, M.L. (2021). Synergies at the level of motor units in single-finger and multi-finger tasks. Experimental Brain Research, 239(9), 29052923. https://doi.org/10.1007/s00221-021-06180-y

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Madarshahian, S., & Latash, M.L. (2022a). Reciprocal and coactivation commands at the level of individual motor units in an extrinsic finger flexor-extensor muscle pair. Experimental Brain Research, 240(1), 321340. https://doi.org/10.1007/s00221-021-06255-w

    • Search Google Scholar
    • Export Citation
  • Madarshahian, S., & Latash, M.L. (2022b). Effects of hand muscle function and dominance on intra-muscle synergies. Human Movement Science, 82, Article 102936. https://doi.org/10.1016/j.humov.2022.102936

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Madarshahian, S., Letizi, J., & Latash, M.L. (2021). Synergic control of a single muscle: The example of flexor digitorum superficialis. Journal of Physiology, 599(4), 12611279. https://doi.org/10.1113/JP280555

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Madarshahian, S., Ricotta, J., & Latash, M.L. (2022). Intra-muscle synergies stabilizing reflex-mediated force changes. Neuroscience, 505, 5977. https://doi.org/10.1016/j.neuroscience.2022.10.009

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Madelaine, P., & Madson, T.M.T. (2009). Changes in the amount an structure of motor variability during a deboning process: Effects of work experience and neck-shoulder discomfort. Applied Ergonomics, 40, 887894. https://doi.org/10.1016/j.apergo.2008.12.006

    • Search Google Scholar
    • Export Citation
  • Madelaine, P., Voigt, M., & Mathiassen, S.E. (2008). The size of cycle to cycle variability in biomechanical exposure among butchers performing a standardized cutting task. Ergonomics 51, 10781095. https://doi.org/10.1080/00140130801958659

    • Search Google Scholar
    • Export Citation
  • Maltenfort, M.G., Heckman, C.J., & Rymer, W.Z. (1998). Decorrelating actions of Renshaw interneurons on the firing of spinal motoneurons within a motor nucleus: A simulation study. Journal of Neurophysiology, 80(1), 309323. https://doi.org/10.1152/jn.1998.80.1.309

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mariappan, Y.K., Manduca, A., Glaser, K.J., Chen, J., Amrami, K.K., & Ehman, R.L. (2010). Vibration imaging for localization of functional compartments of the extrinsic flexor muscles of the hand. Journal of Magnetic Resonance Imaging, 31(6), 13951401. https://doi.org/10.1002/jmri.22183

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marsden, C.D., Merton, R.A., & Morton, H.B. (1976). Stretch reflex and servo action in a variety of human muscles. Journal of Physiology, 259(2), 531560. https://doi.org/10.1113/jphysiol.1976.sp011481

    • Search Google Scholar
    • Export Citation
  • Martin, J.R., Budgeon, M.K., Zatsiorsky, V.M., & Latash, M.L. (2011). Stabilization of the total force in multi-finger pressing tasks studied with the ‘inverse piano’ technique. Human Movement Science, 30(3), 446458. https://doi.org/10.1016/j.humov.2010.08.021

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin, V., Reimann, H., & Schöner, G. (2019). A process account of the uncontrolled manifold structure of joint space variance in pointing movements. Biological Cybernetics, 113(3), 293307. https://doi.org/10.1007/s00422-019-00794-w

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Martin, V., Scholz, J.P., & Schöner, G. (2009). Redundancy, self-motion, and motor control. Neural Computation, 21(5), 13711414. https://doi.org/10.1162/neco.2008.01-08-698

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Matsuyama, K., Mori, F., Nakajima, K., Drew, T., Aoki, M., & Mori, S. (2004). Locomotor role of the corticoreticular-reticulospinal–spinal interneuronal system. Progress in Brain Research, 143, 239249. https://doi.org/10.1016/S0079-6123(03)43024-0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mattei, B., Schmied, A., Mazzocchio, R., Decchi, B., Rossi, A., & Vedel, J.P. (2003). Pharmacologically induced enhancement of recurrent inhibition in humans: Effects on motoneurone discharge patterns. Journal of Physiology, 548(2), 615629. https://doi.org/10.1113/jphysiol.2002.033126

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mattos, D., Latash, M.L., Park, E., Kuhl, J., & Scholz, J.P. (2011). Unpredictable elbow joint perturbation during reaching results in multijoint motor equivalence. Journal of Neurophysiology, 106(3), 14241436. https://doi.org/10.1152/jn.00163.2011

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Merletti, R., Farina, D., & Gazzoni, M. (2003). The linear electrode array: A useful tool with many applications. Journal of Electromyography and Kinesiology, 13(1), 3747. https://doi.org/10.1016/S1050-6411(02)00082-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Merletti, R., Holobar, A., & Farina, D. (2008). Analysis of motor units with high-density surface electromyography. Journal of Electromyography and Kinesiology, 18(6), 879890. https://doi.org/10.1016/j.jelekin.2008.09.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Minassian, K., Hofstoetter, U.S., Dzeladini, F., Guertin, P.A., & Ijspeert, A. (2017). The human central pattern generator for locomotion: Does it exist and contribute to walking? Neuroscientist, 23(6), 649663. https://doi.org/10.1177/1073858417699790

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Müller, H., & Sternad, D. (2003). A randomization method for the calculation of covariation in multiple nonlinear relations: Illustrated with the example of goal-directed movements. Biological Cybernetics, 89(1), 2233. https://doi.org/10.1007/s00422-003-0399-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Myklebust, B.M., & Gottlieb, G.L. (1993). Development of the stretch reflex in the newborn: Reciprocal excitation and reflex irradiation. Child Development, 64(4), 10361045. https://doi.org/10.2307/1131325

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Naito, E., Nakashima, T., Kito, T., Aramaki, Y., Okada, T., & Sadato, N. (2007). Human limb-specific and non-limb-specific brain representations during kinesthetic illusory movements of the upper and lower extremities. European Journal of Neuroscience, 25(11), 34763487. https://doi.org/10.1111/j.1460-9568.2007.05587.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nawab, S.H., Chang, S.S., & De Luca, C.J. (2010). High-yield decomposition of surface EMG signals. Clinical Neurophysiology, 121(10), 16021615. https://doi.org/10.1016/j.clinph.2009.11.092

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nichols, T.R. (2002). Musculoskeletal mechanics: A foundation of motor physiology. Advances in Experimental and Medical Biology, 508, 473479. https://doi.org/10.1007/978-1-4615-0713-0_53

    • Search Google Scholar
    • Export Citation
  • Nichols, T.R. (2018). Distributed force feedback in the spinal cord and the regulation of limb mechanics. Journal of Neurophysiology, 119(3), 11861200. https://doi.org/10.1152/jn.00216.2017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Olafsdottir, H., Yoshida, N., Zatsiorsky, V.M., & Latash, M.L. (2005). Anticipatory covariation of finger forces during self-paced and reaction time force production. Neuroscience Letters, 381(1–2), 9296. https://doi.org/10.1016/j.neulet.2005.02.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Olafsdottir, H., Yoshida, N., Zatsiorsky, V.M., & Latash, M.L. (2007). Elderly show decreased adjustments of motor synergies in preparation to action. Clinical Biomechanics, 22(1), 4451. https://doi.org/10.1016/j.clinbiomech.2006.08.005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ozeki, H., Sadakane, O., Akasaki, T., Naito, T., Shimegi, S., & Sato, H. (2004). Relationship between excitation and inhibition underlying size tuning and contextual response modulation in the cat primary visual cortex. Journal of Neuroscience, 24(6), 14281438. https://doi.org/10.1523/JNEUROSCI.3852-03.2004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park, J., Lewis, M.M., Huang, X., & Latash, M.L. (2013). Effects of olivo-ponto-cerebellar atrophy (OPCA) on finger interaction and coordination. Clinical Neurophysiology, 124(5), 991998. https://doi.org/10.1016/j.clinph.2012.10.021

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park, J., Wu, Y.-H., Lewis, M.M., Huang, X., & Latash, M.L. (2012). Changes in multi-finger interaction and coordination in Parkinson’s disease. Journal of Neurophysiology, 108(3), 915924. https://doi.org/10.1152/jn.00043.2012

    • Search Google Scholar
    • Export Citation
  • Piscitelli, D. (2016). Motor rehabilitation should be based on knowledge of motor control. Archives of Physiotherapy, 6(1), 5. https://doi.org/10.1186/s40945-016-0019-z

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Piscitelli, D., Falaki, A., Solnik, S., & Latash, M.L. (2017). Anticipatory postural adjustments and anticipatory synergy adjustments: Preparing to a postural perturbation with predictable and unpredictable direction. Experimental Brain Research, 235(3), 713730. https://doi.org/10.1007/s00221-016-4835-x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Poppele, R.E., Bosco, G., & Rankin, A.M. (2002). Independent representations of limb axis length and orientation in spinocerebellar response components. Journal of Neurophysiology, 87(1), 409422. https://doi.org/10.1152/jn.00022.2001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Prochazka, A., Gillard, D., & Bennett, D.J. (1997). Positive force feedback control of muscles. Journal of Neurophysiology, 77(6), 32263236. https://doi.org/10.1152/jn.1997.77.6.3226

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Raptis, H., Burtet, L., Forget, R., & Feldman, A.G. (2010). Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: Possible involvement of corticospinal pathways. Journal of Physiology, 588(9), 15511570. https://doi.org/10.1113/jphysiol.2009.186858

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reilly, K.T., Nordstrom, M.A., & Schieber, M.H. (2004). Short-term synchronization between motor units in different functional subdivisions of the human flexor digitorum profundus muscle. Journal of Neurophysiology, 92(2), 734742. https://doi.org/10.1152/jn.00027.2004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reisman, D., & Scholz, J.P. (2003). Aspects of joint coordination are preserved during pointing in persons with post-stroke hemiparesis. Brain, 126(11), 25102527. https://doi.org/10.1093/brain/awg246

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Reschechtko, S., & Latash, M.L. (2017). Stability of hand force production: I. Hand level control variables and multi-finger synergies. Journal of Neurophysiology, 118(6), 31523164. https://doi.org/10.1152/jn.00485.2017

    • Search Google Scholar
    • Export Citation
  • Reschechtko, S., & Pruszynski, A. (2020). Stretch reflexes. Current Biology, 30(18), R1025R1030. https://doi.org/10.1016/j.cub.2020.07.092

  • Reschechtko, S., Zatsiorsky, V.M., & Latash, M.L. (2014). Stability of multi-finger action in different spaces. Journal of Neurophysiology, 112(12), 32093218. https://doi.org/10.1152/jn.00395.2014

    • Search Google Scholar
    • Export Citation
  • Reschechtko, S., Zatsiorsky, V.M., & Latash, M.L. (2017). The synergic control of multi-finger force production: Stability of explicit and implicit task components. Experimental Brain Research, 235(1), 114. https://doi.org/10.1007/s00221-016-4768-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rowald, A., Komi, S., Demesmaeker, R., et al. (2022) Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nature Medicine, 28(2), 260271. https://doi.org/10.1038/s41591-021-01663-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sainburg, R.L. (2005). Handedness: Differential specializations for control of trajectory and position. Exercise and Sport Science Reviews, 33(4), 206213. https://doi.org/10.1097/00003677-200510000-00010

    • Search Google Scholar
    • Export Citation
  • Sandrini, G., Serrao, M., Rossi, P., Romaniello, A., Cruccu, G., & Willer, J.C. (2005). The lower limb flexion reflex in humans. Progress in Neurobiology, 77(6), 353395. https://doi.org/10.1016/j.pneurobio.2005.11.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schaefer, S.Y., Haaland, K.Y., & Sainburg, R.L. (2007). Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. Brain, 130(8), 21462158. https://doi.org/10.1093/brain/awm145

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., & Schöner, G. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research, 126(3), 289306. https://doi.org/10.1007/s002210050738

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., Schöner, G., Hsu, W.L., Jeka, J.J., Horak, F., & Martin, V. (2007). Motor equivalent control of the center of mass in response to support surface perturbations. Experimental Brain Research, 180(1), 163179. https://doi.org/10.1007/s00221-006-0848-1

    • Search Google Scholar
    • Export Citation
  • Schöner, G. (1995). Recent developments and problems in human movement science and their conceptual implications. Ecological Psychology, 8, 291314. https://doi.org/10.1207/s15326969eco0704_5

    • Search Google Scholar
    • Export Citation
  • Schotland, J.L., & Rymer, W.Z. (1993a). Wipe and flexion reflexes of the frog. I. Kinematics and EMG patterns. Journal of Neurophysiology, 69(5), 17251735. https://doi.org/10.1152/jn.1993.69.5.1725

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schotland, J.L., & Rymer, W.Z. (1993b). Wipe and flexion reflexes of the frog. II. Response to perturbations. Journal of Neurophysiology, 69(5), 17361748. https://doi.org/10.1152/jn.1993.69.5.1736

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Semmler, J.G., Kornatz, K.W., Dinenno, D.V., Zhou, S., & Enoka, R.M. (2002). Motor unit synchronization is enhanced during slow lengthening contraction of a hand muscle. Journal of Physiology, 545(2), 681695. https://doi.org/10.1113/jphysiol.2002.026948

    • Search Google Scholar
    • Export Citation
  • Semmler, J.G., Nordstrom, M.A., & Wallace, C.J. (1997). Relationship between motor unit short-term synchronization and common drive in human first dorsal interosseous muscle. Brain Research, 767(2), 314320. https://doi.org/10.1016/S0006-8993(97)00621-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shapkova, E.Y.u. (2004). Spinal locomotor capability revealed by electrical stimulation of the lumbar enlargement in paraplegic patients. In M.L. Latash & M.F. Levin (Eds.), Progress in motor control-3 (pp. 253290). Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Shim, J.K., Latash, M.L., & Zatsiorsky, V.M. (2003). Prehension synergies: Trial-to-trial variability and hierarchical organization of stable performance. Experimental Brain Research, 152(2), 173184. https://doi.org/10.1007/s00221-003-1527-0.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shim, J.K., Olafsdottir, H., Zatsiorsky, V.M., & Latash, M.L. (2005). The emergence and disappearance of multi-digit synergies during force production tasks. Experimental Brain Research, 164(2), 260270. https://doi.org/10.1007/s00221-005-2248-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shinohara, M., Latash, M.L., & Zatsiorsky, V.M. (2003). Age effects on force production by the intrinsic and extrinsic hand muscles and finger interaction during maximal contraction tasks. Journal of Applied Physiology, 95(4), 13611369. https://doi.org/10.1152/japplphysiol.00070.2003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith, A.M. (1981). The coactivation of antagonist muscles. Canadian Journal of Physiology and Pharmacology, 59(7), 733747. https://doi.org/10.1139/y81-110

    • PubMed
    • Search Google Scholar
    • Export Citation
  • St. Gregory Palamas. (1983). The triads. Classics of western spirituality. Paulist Press.

  • St. Gregory Palamas. (1988). The one hundred and fifty chapters. Pontifical Institute of Mediaeval Studies.

  • Stein, P.S. (1989). Spinal cord circuits for motor pattern selection in the turtle. Annals of the New York Academy of Sciences, 563, 110. https://doi.org/10.1111/j.1749-6632.1989.tb42186.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sumbre, G., Fiorito, G., Flash, T., & Hochner, B. (2005). Neurobiology: Motor control of flexible octopus arms. Nature, 433(7026), 595596. https://doi.org/10.1038/433595a

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sumbre, G., Fiorito, G., Flash, T., & Hochner, B. (2006). Octopuses use a human-like strategy to control precise point-to-point arm movements. Current Biology, 16(8), 767772. https://doi.org/10.1016/j.cub.2006.02.069

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tanzarella, S., Muceli, S., Santello, M., & Farina, D. (2021). Synergistic organization of neural inputs from spinal motor neurons to extrinsic and intrinsic hand muscles. Journal of Neuroscience, 41(32), 68786891. https://doi.org/10.1523/JNEUROSCI.0419-21.2021

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thach, W.T., Goodkin, H.G., & Keating, J.G. (1992). Cerebellum and the adaptive coordination of movement. Annual Reviews in Neuroscience, 15(1), 403442. https://doi.org/10.1146/annurev.ne.15.030192.002155

    • Search Google Scholar
    • Export Citation
  • Thompson, A.K., & Wolpaw, J.R. (2015). Restoring walking after spinal cord injury: Operant conditioning of spinal reflexes can help. Neuroscientist, 21(2), 203215. https://doi.org/10.1177/1073858414527541

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thompson, A.K., & Wolpaw, J.R. (2021). H-reflex conditioning during locomotion in people with spinal cord injury. Journal of Physiology, 599(9), 24532469. https://doi.org/10.1113/JP278173

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tillman, M., & Ambike, S. (2018). Cue-induced changes in the stability of finger force-production tasks revealed by the uncontrolled manifold analysis. Journal of Neurophysiology, 119(1), 2132. https://doi.org/10.1152/jn.00519.2017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tillman, M., & Ambike, S. (2020). The influence of recent actions and anticipated actions on the stability of finger forces during a tracking task. Motor Control, 24(3), 365382. https://doi.org/10.1123/mc.2019-0124

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ting, L.H., & McKay, J.L. (2007). Neuromechanics of muscle synergies for posture and movement. Current Opinions in Neurobiology, 17(6), 622628. https://doi.org/10.1016/j.conb.2008.01.002

    • Search Google Scholar
    • Export Citation
  • Todorov, E., & Jordan, M.I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5(11), 12261235. https://doi.org/10.1038/nn963

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tresch, M.C., Cheung, V.C., & d’Avella, A. (2006). Matrix factorization algorithms for the identification of muscle synergies: Evaluation on simulated and experimental data sets. Journal of Neurophysiology, 95(4), 21992212. https://doi.org/10.1152/jn.00222.2005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tresch, M.C., & Jarc, A. (2009). The case for and against muscle synergies. Current Opinions in Neurobiology, 19(6), 601607. https://doi.org/10.1016/j.conb.2009.09.002

    • Search Google Scholar
    • Export Citation
  • Turvey, M.T. (2007). Action and perception at the level of synergies. Human Movement Science, 26(4), 657697. https://doi.org/10.1016/j.humov.2007.04.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Uchiyama, T., Johansson, H., & Windhorst, U. (2003). Static and dynamic input-output relations of the feline medial gastrocnemius motoneuron-muscle system subjected to recurrent inhibition: A model study. Biological Cybernetics, 89(4), 264273. https://doi.org/10.1007/s00422-003-0417-7

    • Search Google Scholar
    • Export Citation
  • Van Heijst, J.J., Vos, J.E., & Bullock, D. (1998). Development in a biologically inspired spinal neural network for movement control. Neural Networks, 11(7–8), 13051316. https://doi.org/10.1016/S0893-6080(98)00025-2

    • Search Google Scholar
    • Export Citation
  • Vaz, D.V., Pinto, V.A., Junior, R.R.S., Mattos, D.J.S., & Mitra, S. (2019). Coordination in adults with neurological impairment—A systematic review of uncontrolled manifold studies. Gait and Posture, 69, 6678. https://doi.org/10.1016/j.gaitpost.2019.01.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Welsh, J.P., & Llinas, R. (1997). Some organizing principles for the control of movement based on olivocerebellar physiology. Progress in Brain Research, 114, 449461. https://doi.org/10.1016/S0079-6123(08)63380-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wilhelm, L., Zatsiorsky, V.M., & Latash, M.L. (2013). Equifinality and its violations in a redundant system: Multi-finger accurate force production. Journal of Neurophysiology, 110(8), 19651973. https://doi.org/10.1152/jn.00461.2013

    • Search Google Scholar
    • Export Citation
  • Williams, E.R., & Baker, S.N. (2009) Renshaw cell recurrent inhibition improves physiological tremor by reducing corticomuscular coupling at 10 Hz. Journal of Neuroscience, 29(20), 66166624. https://doi.org/10.1523/JNEUROSCI.0272-09.2009

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Winges, S.A., & Santello, M. (2005). From single motor unit activity to multiple grip forces: Mini-review of multi-digit grasping. Integrative and Computational Biology, 45(4), 679682. https://doi.org/10.1093/icb/45.4.679

    • Search Google Scholar
    • Export Citation
  • Witney, A.G., Wing, A., Thonnard, J.L., & Smith, A.M. (2004). The cutaneous contribution to adaptive precision grip. Trends in Neuroscience, 27(10), 637643. https://doi.org/10.1016/j.tins.2004.08.006

    • Search Google Scholar
    • Export Citation
  • Wolpaw, J.R., & Carp, J.S. (1993). Adaptive plasticity in spinal cord. Advances in Neurology, 59, 163174.

  • Wolpaw, J.R., & Tennissen, A.M. (2001). Activity-dependent spinal cord plasticity in health and disease. Annual Reviews in Neuroscience, 24, 807843.

    • Search Google Scholar
    • Export Citation
  • Zatsiorsky, V.M., Li, Z.M., & Latash, M.L. (2000). Enslaving effects in multi-finger force production. Experimental Brain Research, 131(2), 187195. https://doi.org/10.1007/s002219900261

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Sainburg, R. L., Zatsiorsky, V.M., & Latash, M.L. (2006). Hand dominance and multi-finger synergies. Neuroscience Letters, 409(3), 200204. https://doi.org/10.1016/j.neulet.2006.09.048

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1344 1344 224
Full Text Views 498 498 9
PDF Downloads 466 466 2