Instant Equilibrium Point and Its Migration in Standing Tasks: Rambling and Trembling Components of the Stabilogram

in Motor Control
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $195.00

A method of decomposing stabilograms into two components, termed rambling and trembling, was developed. The rambling component reveals the motion of a moving reference point with respect to which the body's equilibrium is instantantly maintained. The trembling component reflects body oscillation around the reference point trajectory. The concepts of instant equilibrium point (IEP) and discrete IEP trajectory are introduced. The rambling trajectory was computed by interpolating the discrete IEP trajectory with cubic spline functions. The trembling trajectory is found as a difference between the approximated rambling trajectory and the COP trajectory. Instant values of the trembling trajectory are negatively correlated with the values of the horizontal ground reaction force at a zero time lag. It suggests that trembling is strongly influenced by a restoring force proportional to the magnitude of COP deviation from the rambling trajectory and acts without a time delay. An increment in relative COP position per unit of the restoring force, in mm/N, was on average 1.4 ± 0.4. The contribution of rambling and trembling components in the stabilogram was ascertained. The rambling variability is approximately three times larger than the trembling variability.

Vladimir M. Zatsiorsky is with the Biomechanics Laboratory, 39 Recreation Bldg, The Pennsylvania State University, University Park, PA 16802. Marcos Duarte is with the Biomechanics Laboratory at Penn State as a postdoctoral fellow.

All Time Past Year Past 30 Days
Abstract Views 269 219 38
Full Text Views 9 6 0
PDF Downloads 13 9 0