Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

Reaching out for an object is often described as consisting of two components that are based on different visual information. Information about the object's position and orientation guides the hand to the object, while information about the object's shape and size determines how the fingers move relative to the thumb to grasp it. We propose an alternative description, which consists of determining suitable positions on the object—on the basis of its shape, surface roughness, and so on—and then moving one's thumb and fingers more or less independently to these positions. We modeled this description using a minimum-jerk approach, whereby the finger and thumb approach their respective target positions approximately orthogonally to the surface. Our model predicts how experimental variables such as object size, movement speed, fragility, and required accuracy will influence the timing and size of the maximum aperture of the hand. An extensive review of experimental studies on grasping showed that the predicted influences correspond to human behavior.

The authors are with Vakgroep Fysiologie, Erasmus Universiteit Rotterdam, Postbus 1738, 3000 DR Rotterdam, The Netherlands.

All Time Past Year Past 30 Days
Abstract Views 296 296 18
Full Text Views 5 5 0
PDF Downloads 5 5 0