The Control of Memory-Guided Reaching Movements in Peripersonal Space

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

The goal of the present investigation was to explore the putative contributions of feedforward- and feedback-based processes in the control of memory-guided reaching movements. Participants (N = 4) completed an extensive number of reaching movements (2700) to 3 midline targets (20, 30, 40 cm) in 6 visual conditions: full-vision, open-loop, and four memory-guided conditions (0, 200, 400, and 600 ms of delay). To infer limb control, we used a regression technique to examine the within-trial correspondence between the spatial position of the limb at peak acceleration, peak velocity, peak deceleration, and the ultimate movement endpoint. A high degree of within-trial correspondence would suggest that the final position of the limb was largely specified prior to movement onset and not adjusted during the action (i.e., feedforward control); conversely, a low degree of within-trial correspondence would suggest that movements were modified during the reaching trajectory (i.e., feedback control). Full-vision reaches were found to be more accurate and less variable than open-loop and memory-guided reaches. Moreover, full-vision reaches demonstrated only modest within-trial correspondence between the spatial position of the limb at each kinematic marker and the ultimate movement endpoint, suggesting that reaching accuracy was achieved by adjusting the limb trajectory throughout the course of the action. Open-loop and memory-guided movements exhibited strong within-trial correspondence between final limb position and the position of the limb at peak velocity and peak deceleration. This strong correspondence indicates that the final position of the limb was largely determined by processes that occurred before the reach was initiated; errors in the planning process were not corrected during the course of the action. Thus, and contrary to our previous findings in a video-based aiming task, it appears that stored target information is not extensively (if at all) used to modify the trajectory of reaching movements to remembered targets in peripersonal space.

M. Heath is with the Department of Kinesiology and the Program in Neural Science at Indiana University, Bloomington, IN 47408. D.A. Westwood is with the School of Health and Human Performance at Dalhousie University, Halifax, NS, Canada B3H 4R2. G. Binsted is with the College of Kinesiology at the University of Saskatchewan, Saskatoon, SN, Canada S7N 5A7.

Motor Control
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 13 13 5
Full Text Views 3 3 0
PDF Downloads 5 5 0
Altmetric Badge
PubMed
Google Scholar
Cited By